aboutsummaryrefslogtreecommitdiff
path: root/src/random.cpp
blob: f4c51574ccc960dbcd1f2b6f5d44ce773cd74ba3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <random.h>

#include <compat/cpuid.h>
#include <crypto/sha256.h>
#include <crypto/sha512.h>
#include <logging.h>
#include <randomenv.h>
#include <span.h>
#include <support/allocators/secure.h>
#include <support/cleanse.h>
#include <sync.h>
#include <util/time.h>

#include <cmath>
#include <cstdlib>
#include <thread>

#ifdef WIN32
#include <windows.h>
#include <wincrypt.h>
#else
#include <fcntl.h>
#include <sys/time.h>
#endif

#ifdef HAVE_SYS_GETRANDOM
#include <sys/syscall.h>
#include <linux/random.h>
#endif
#if defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
#include <unistd.h>
#include <sys/random.h>
#endif
#ifdef HAVE_SYSCTL_ARND
#include <sys/sysctl.h>
#endif

[[noreturn]] static void RandFailure()
{
    LogPrintf("Failed to read randomness, aborting\n");
    std::abort();
}

static inline int64_t GetPerformanceCounter() noexcept
{
    // Read the hardware time stamp counter when available.
    // See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
    return __rdtsc();
#elif !defined(_MSC_VER) && defined(__i386__)
    uint64_t r = 0;
    __asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair.
    return r;
#elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
    uint64_t r1 = 0, r2 = 0;
    __asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx.
    return (r2 << 32) | r1;
#else
    // Fall back to using standard library clock (usually microsecond or nanosecond precision)
    return std::chrono::high_resolution_clock::now().time_since_epoch().count();
#endif
}

#ifdef HAVE_GETCPUID
static bool g_rdrand_supported = false;
static bool g_rdseed_supported = false;
static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
static constexpr uint32_t CPUID_F7_EBX_RDSEED = 0x00040000;
#ifdef bit_RDRND
static_assert(CPUID_F1_ECX_RDRAND == bit_RDRND, "Unexpected value for bit_RDRND");
#endif
#ifdef bit_RDSEED
static_assert(CPUID_F7_EBX_RDSEED == bit_RDSEED, "Unexpected value for bit_RDSEED");
#endif

static void InitHardwareRand()
{
    uint32_t eax, ebx, ecx, edx;
    GetCPUID(1, 0, eax, ebx, ecx, edx);
    if (ecx & CPUID_F1_ECX_RDRAND) {
        g_rdrand_supported = true;
    }
    GetCPUID(7, 0, eax, ebx, ecx, edx);
    if (ebx & CPUID_F7_EBX_RDSEED) {
        g_rdseed_supported = true;
    }
}

static void ReportHardwareRand()
{
    // This must be done in a separate function, as InitHardwareRand() may be indirectly called
    // from global constructors, before logging is initialized.
    if (g_rdseed_supported) {
        LogPrintf("Using RdSeed as an additional entropy source\n");
    }
    if (g_rdrand_supported) {
        LogPrintf("Using RdRand as an additional entropy source\n");
    }
}

/** Read 64 bits of entropy using rdrand.
 *
 * Must only be called when RdRand is supported.
 */
static uint64_t GetRdRand() noexcept
{
    // RdRand may very rarely fail. Invoke it up to 10 times in a loop to reduce this risk.
#ifdef __i386__
    uint8_t ok;
    // Initialize to 0 to silence a compiler warning that r1 or r2 may be used
    // uninitialized. Even if rdrand fails (!ok) it will set the output to 0,
    // but there is no way that the compiler could know that.
    uint32_t r1 = 0, r2 = 0;
    for (int i = 0; i < 10; ++i) {
        __asm__ volatile (".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdrand %eax
        if (ok) break;
    }
    for (int i = 0; i < 10; ++i) {
        __asm__ volatile (".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r2), "=q"(ok) :: "cc"); // rdrand %eax
        if (ok) break;
    }
    return (((uint64_t)r2) << 32) | r1;
#elif defined(__x86_64__) || defined(__amd64__)
    uint8_t ok;
    uint64_t r1 = 0; // See above why we initialize to 0.
    for (int i = 0; i < 10; ++i) {
        __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdrand %rax
        if (ok) break;
    }
    return r1;
#else
#error "RdRand is only supported on x86 and x86_64"
#endif
}

/** Read 64 bits of entropy using rdseed.
 *
 * Must only be called when RdSeed is supported.
 */
static uint64_t GetRdSeed() noexcept
{
    // RdSeed may fail when the HW RNG is overloaded. Loop indefinitely until enough entropy is gathered,
    // but pause after every failure.
#ifdef __i386__
    uint8_t ok;
    uint32_t r1, r2;
    do {
        __asm__ volatile (".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdseed %eax
        if (ok) break;
        __asm__ volatile ("pause");
    } while(true);
    do {
        __asm__ volatile (".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r2), "=q"(ok) :: "cc"); // rdseed %eax
        if (ok) break;
        __asm__ volatile ("pause");
    } while(true);
    return (((uint64_t)r2) << 32) | r1;
#elif defined(__x86_64__) || defined(__amd64__)
    uint8_t ok;
    uint64_t r1;
    do {
        __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdseed %rax
        if (ok) break;
        __asm__ volatile ("pause");
    } while(true);
    return r1;
#else
#error "RdSeed is only supported on x86 and x86_64"
#endif
}

#else
/* Access to other hardware random number generators could be added here later,
 * assuming it is sufficiently fast (in the order of a few hundred CPU cycles).
 * Slower sources should probably be invoked separately, and/or only from
 * RandAddPeriodic (which is called once a minute).
 */
static void InitHardwareRand() {}
static void ReportHardwareRand() {}
#endif

/** Add 64 bits of entropy gathered from hardware to hasher. Do nothing if not supported. */
static void SeedHardwareFast(CSHA512& hasher) noexcept {
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
    if (g_rdrand_supported) {
        uint64_t out = GetRdRand();
        hasher.Write((const unsigned char*)&out, sizeof(out));
        return;
    }
#endif
}

/** Add 256 bits of entropy gathered from hardware to hasher. Do nothing if not supported. */
static void SeedHardwareSlow(CSHA512& hasher) noexcept {
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
    // When we want 256 bits of entropy, prefer RdSeed over RdRand, as it's
    // guaranteed to produce independent randomness on every call.
    if (g_rdseed_supported) {
        for (int i = 0; i < 4; ++i) {
            uint64_t out = GetRdSeed();
            hasher.Write((const unsigned char*)&out, sizeof(out));
        }
        return;
    }
    // When falling back to RdRand, XOR the result of 1024 results.
    // This guarantees a reseeding occurs between each.
    if (g_rdrand_supported) {
        for (int i = 0; i < 4; ++i) {
            uint64_t out = 0;
            for (int j = 0; j < 1024; ++j) out ^= GetRdRand();
            hasher.Write((const unsigned char*)&out, sizeof(out));
        }
        return;
    }
#endif
}

/** Use repeated SHA512 to strengthen the randomness in seed32, and feed into hasher. */
static void Strengthen(const unsigned char (&seed)[32], SteadyClock::duration dur, CSHA512& hasher) noexcept
{
    CSHA512 inner_hasher;
    inner_hasher.Write(seed, sizeof(seed));

    // Hash loop
    unsigned char buffer[64];
    const auto stop{SteadyClock::now() + dur};
    do {
        for (int i = 0; i < 1000; ++i) {
            inner_hasher.Finalize(buffer);
            inner_hasher.Reset();
            inner_hasher.Write(buffer, sizeof(buffer));
        }
        // Benchmark operation and feed it into outer hasher.
        int64_t perf = GetPerformanceCounter();
        hasher.Write((const unsigned char*)&perf, sizeof(perf));
    } while (SteadyClock::now() < stop);

    // Produce output from inner state and feed it to outer hasher.
    inner_hasher.Finalize(buffer);
    hasher.Write(buffer, sizeof(buffer));
    // Try to clean up.
    inner_hasher.Reset();
    memory_cleanse(buffer, sizeof(buffer));
}

#ifndef WIN32
/** Fallback: get 32 bytes of system entropy from /dev/urandom. The most
 * compatible way to get cryptographic randomness on UNIX-ish platforms.
 */
static void GetDevURandom(unsigned char *ent32)
{
    int f = open("/dev/urandom", O_RDONLY);
    if (f == -1) {
        RandFailure();
    }
    int have = 0;
    do {
        ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have);
        if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) {
            close(f);
            RandFailure();
        }
        have += n;
    } while (have < NUM_OS_RANDOM_BYTES);
    close(f);
}
#endif

/** Get 32 bytes of system entropy. */
void GetOSRand(unsigned char *ent32)
{
#if defined(WIN32)
    HCRYPTPROV hProvider;
    int ret = CryptAcquireContextW(&hProvider, nullptr, nullptr, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
    if (!ret) {
        RandFailure();
    }
    ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32);
    if (!ret) {
        RandFailure();
    }
    CryptReleaseContext(hProvider, 0);
#elif defined(HAVE_SYS_GETRANDOM)
    /* Linux. From the getrandom(2) man page:
     * "If the urandom source has been initialized, reads of up to 256 bytes
     * will always return as many bytes as requested and will not be
     * interrupted by signals."
     */
    int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0);
    if (rv != NUM_OS_RANDOM_BYTES) {
        if (rv < 0 && errno == ENOSYS) {
            /* Fallback for kernel <3.17: the return value will be -1 and errno
             * ENOSYS if the syscall is not available, in that case fall back
             * to /dev/urandom.
             */
            GetDevURandom(ent32);
        } else {
            RandFailure();
        }
    }
#elif defined(__OpenBSD__)
    /* OpenBSD. From the arc4random(3) man page:
       "Use of these functions is encouraged for almost all random number
        consumption because the other interfaces are deficient in either
        quality, portability, standardization, or availability."
       The function call is always successful.
     */
    arc4random_buf(ent32, NUM_OS_RANDOM_BYTES);
    // Silence a compiler warning about unused function.
    (void)GetDevURandom;
#elif defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
    /* getentropy() is available on macOS 10.12 and later.
     */
    if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
        RandFailure();
    }
    // Silence a compiler warning about unused function.
    (void)GetDevURandom;
#elif defined(HAVE_SYSCTL_ARND)
    /* FreeBSD, NetBSD and similar. It is possible for the call to return less
     * bytes than requested, so need to read in a loop.
     */
    static int name[2] = {CTL_KERN, KERN_ARND};
    int have = 0;
    do {
        size_t len = NUM_OS_RANDOM_BYTES - have;
        if (sysctl(name, std::size(name), ent32 + have, &len, nullptr, 0) != 0) {
            RandFailure();
        }
        have += len;
    } while (have < NUM_OS_RANDOM_BYTES);
    // Silence a compiler warning about unused function.
    (void)GetDevURandom;
#else
    /* Fall back to /dev/urandom if there is no specific method implemented to
     * get system entropy for this OS.
     */
    GetDevURandom(ent32);
#endif
}

namespace {

class RNGState {
    Mutex m_mutex;
    /* The RNG state consists of 256 bits of entropy, taken from the output of
     * one operation's SHA512 output, and fed as input to the next one.
     * Carrying 256 bits of entropy should be sufficient to guarantee
     * unpredictability as long as any entropy source was ever unpredictable
     * to an attacker. To protect against situations where an attacker might
     * observe the RNG's state, fresh entropy is always mixed when
     * GetStrongRandBytes is called.
     */
    unsigned char m_state[32] GUARDED_BY(m_mutex) = {0};
    uint64_t m_counter GUARDED_BY(m_mutex) = 0;
    bool m_strongly_seeded GUARDED_BY(m_mutex) = false;

    Mutex m_events_mutex;
    CSHA256 m_events_hasher GUARDED_BY(m_events_mutex);

public:
    RNGState() noexcept
    {
        InitHardwareRand();
    }

    ~RNGState() = default;

    void AddEvent(uint32_t event_info) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_events_mutex)
    {
        LOCK(m_events_mutex);

        m_events_hasher.Write((const unsigned char *)&event_info, sizeof(event_info));
        // Get the low four bytes of the performance counter. This translates to roughly the
        // subsecond part.
        uint32_t perfcounter = (GetPerformanceCounter() & 0xffffffff);
        m_events_hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter));
    }

    /**
     * Feed (the hash of) all events added through AddEvent() to hasher.
     */
    void SeedEvents(CSHA512& hasher) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_events_mutex)
    {
        // We use only SHA256 for the events hashing to get the ASM speedups we have for SHA256,
        // since we want it to be fast as network peers may be able to trigger it repeatedly.
        LOCK(m_events_mutex);

        unsigned char events_hash[32];
        m_events_hasher.Finalize(events_hash);
        hasher.Write(events_hash, 32);

        // Re-initialize the hasher with the finalized state to use later.
        m_events_hasher.Reset();
        m_events_hasher.Write(events_hash, 32);
    }

    /** Extract up to 32 bytes of entropy from the RNG state, mixing in new entropy from hasher.
     *
     * If this function has never been called with strong_seed = true, false is returned.
     */
    bool MixExtract(unsigned char* out, size_t num, CSHA512&& hasher, bool strong_seed) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
    {
        assert(num <= 32);
        unsigned char buf[64];
        static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE, "Buffer needs to have hasher's output size");
        bool ret;
        {
            LOCK(m_mutex);
            ret = (m_strongly_seeded |= strong_seed);
            // Write the current state of the RNG into the hasher
            hasher.Write(m_state, 32);
            // Write a new counter number into the state
            hasher.Write((const unsigned char*)&m_counter, sizeof(m_counter));
            ++m_counter;
            // Finalize the hasher
            hasher.Finalize(buf);
            // Store the last 32 bytes of the hash output as new RNG state.
            memcpy(m_state, buf + 32, 32);
        }
        // If desired, copy (up to) the first 32 bytes of the hash output as output.
        if (num) {
            assert(out != nullptr);
            memcpy(out, buf, num);
        }
        // Best effort cleanup of internal state
        hasher.Reset();
        memory_cleanse(buf, 64);
        return ret;
    }
};

RNGState& GetRNGState() noexcept
{
    // This idiom relies on the guarantee that static variable are initialized
    // on first call, even when multiple parallel calls are permitted.
    static std::vector<RNGState, secure_allocator<RNGState>> g_rng(1);
    return g_rng[0];
}
}

/* A note on the use of noexcept in the seeding functions below:
 *
 * None of the RNG code should ever throw any exception.
 */

static void SeedTimestamp(CSHA512& hasher) noexcept
{
    int64_t perfcounter = GetPerformanceCounter();
    hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter));
}

static void SeedFast(CSHA512& hasher) noexcept
{
    unsigned char buffer[32];

    // Stack pointer to indirectly commit to thread/callstack
    const unsigned char* ptr = buffer;
    hasher.Write((const unsigned char*)&ptr, sizeof(ptr));

    // Hardware randomness is very fast when available; use it always.
    SeedHardwareFast(hasher);

    // High-precision timestamp
    SeedTimestamp(hasher);
}

static void SeedSlow(CSHA512& hasher, RNGState& rng) noexcept
{
    unsigned char buffer[32];

    // Everything that the 'fast' seeder includes
    SeedFast(hasher);

    // OS randomness
    GetOSRand(buffer);
    hasher.Write(buffer, sizeof(buffer));

    // Add the events hasher into the mix
    rng.SeedEvents(hasher);

    // High-precision timestamp.
    //
    // Note that we also commit to a timestamp in the Fast seeder, so we indirectly commit to a
    // benchmark of all the entropy gathering sources in this function).
    SeedTimestamp(hasher);
}

/** Extract entropy from rng, strengthen it, and feed it into hasher. */
static void SeedStrengthen(CSHA512& hasher, RNGState& rng, SteadyClock::duration dur) noexcept
{
    // Generate 32 bytes of entropy from the RNG, and a copy of the entropy already in hasher.
    unsigned char strengthen_seed[32];
    rng.MixExtract(strengthen_seed, sizeof(strengthen_seed), CSHA512(hasher), false);
    // Strengthen the seed, and feed it into hasher.
    Strengthen(strengthen_seed, dur, hasher);
}

static void SeedPeriodic(CSHA512& hasher, RNGState& rng) noexcept
{
    // Everything that the 'fast' seeder includes
    SeedFast(hasher);

    // High-precision timestamp
    SeedTimestamp(hasher);

    // Add the events hasher into the mix
    rng.SeedEvents(hasher);

    // Dynamic environment data (performance monitoring, ...)
    auto old_size = hasher.Size();
    RandAddDynamicEnv(hasher);
    LogPrint(BCLog::RAND, "Feeding %i bytes of dynamic environment data into RNG\n", hasher.Size() - old_size);

    // Strengthen for 10 ms
    SeedStrengthen(hasher, rng, 10ms);
}

static void SeedStartup(CSHA512& hasher, RNGState& rng) noexcept
{
    // Gather 256 bits of hardware randomness, if available
    SeedHardwareSlow(hasher);

    // Everything that the 'slow' seeder includes.
    SeedSlow(hasher, rng);

    // Dynamic environment data (performance monitoring, ...)
    auto old_size = hasher.Size();
    RandAddDynamicEnv(hasher);

    // Static environment data
    RandAddStaticEnv(hasher);
    LogPrint(BCLog::RAND, "Feeding %i bytes of environment data into RNG\n", hasher.Size() - old_size);

    // Strengthen for 100 ms
    SeedStrengthen(hasher, rng, 100ms);
}

enum class RNGLevel {
    FAST, //!< Automatically called by GetRandBytes
    SLOW, //!< Automatically called by GetStrongRandBytes
    PERIODIC, //!< Called by RandAddPeriodic()
};

static void ProcRand(unsigned char* out, int num, RNGLevel level) noexcept
{
    // Make sure the RNG is initialized first (as all Seed* function possibly need hwrand to be available).
    RNGState& rng = GetRNGState();

    assert(num <= 32);

    CSHA512 hasher;
    switch (level) {
    case RNGLevel::FAST:
        SeedFast(hasher);
        break;
    case RNGLevel::SLOW:
        SeedSlow(hasher, rng);
        break;
    case RNGLevel::PERIODIC:
        SeedPeriodic(hasher, rng);
        break;
    }

    // Combine with and update state
    if (!rng.MixExtract(out, num, std::move(hasher), false)) {
        // On the first invocation, also seed with SeedStartup().
        CSHA512 startup_hasher;
        SeedStartup(startup_hasher, rng);
        rng.MixExtract(out, num, std::move(startup_hasher), true);
    }
}

void GetRandBytes(Span<unsigned char> bytes) noexcept { ProcRand(bytes.data(), bytes.size(), RNGLevel::FAST); }
void GetStrongRandBytes(Span<unsigned char> bytes) noexcept { ProcRand(bytes.data(), bytes.size(), RNGLevel::SLOW); }
void RandAddPeriodic() noexcept { ProcRand(nullptr, 0, RNGLevel::PERIODIC); }
void RandAddEvent(const uint32_t event_info) noexcept { GetRNGState().AddEvent(event_info); }

bool g_mock_deterministic_tests{false};

uint64_t GetRandInternal(uint64_t nMax) noexcept
{
    return FastRandomContext(g_mock_deterministic_tests).randrange(nMax);
}

uint256 GetRandHash() noexcept
{
    uint256 hash;
    GetRandBytes(hash);
    return hash;
}

void FastRandomContext::RandomSeed()
{
    uint256 seed = GetRandHash();
    rng.SetKey32(seed.begin());
    requires_seed = false;
}

uint256 FastRandomContext::rand256() noexcept
{
    if (requires_seed) RandomSeed();
    uint256 ret;
    rng.Keystream(ret.data(), ret.size());
    return ret;
}

std::vector<unsigned char> FastRandomContext::randbytes(size_t len)
{
    if (requires_seed) RandomSeed();
    std::vector<unsigned char> ret(len);
    if (len > 0) {
        rng.Keystream(ret.data(), len);
    }
    return ret;
}

FastRandomContext::FastRandomContext(const uint256& seed) noexcept : requires_seed(false), bitbuf_size(0)
{
    rng.SetKey32(seed.begin());
}

bool Random_SanityCheck()
{
    uint64_t start = GetPerformanceCounter();

    /* This does not measure the quality of randomness, but it does test that
     * GetOSRand() overwrites all 32 bytes of the output given a maximum
     * number of tries.
     */
    static constexpr int MAX_TRIES{1024};
    uint8_t data[NUM_OS_RANDOM_BYTES];
    bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */
    int num_overwritten;
    int tries = 0;
    /* Loop until all bytes have been overwritten at least once, or max number tries reached */
    do {
        memset(data, 0, NUM_OS_RANDOM_BYTES);
        GetOSRand(data);
        for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
            overwritten[x] |= (data[x] != 0);
        }

        num_overwritten = 0;
        for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
            if (overwritten[x]) {
                num_overwritten += 1;
            }
        }

        tries += 1;
    } while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES);
    if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */

    // Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep.
    std::this_thread::sleep_for(std::chrono::milliseconds(1));
    uint64_t stop = GetPerformanceCounter();
    if (stop == start) return false;

    // We called GetPerformanceCounter. Use it as entropy.
    CSHA512 to_add;
    to_add.Write((const unsigned char*)&start, sizeof(start));
    to_add.Write((const unsigned char*)&stop, sizeof(stop));
    GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false);

    return true;
}

FastRandomContext::FastRandomContext(bool fDeterministic) noexcept : requires_seed(!fDeterministic), bitbuf_size(0)
{
    if (!fDeterministic) {
        return;
    }
    uint256 seed;
    rng.SetKey32(seed.begin());
}

FastRandomContext& FastRandomContext::operator=(FastRandomContext&& from) noexcept
{
    requires_seed = from.requires_seed;
    rng = from.rng;
    bitbuf = from.bitbuf;
    bitbuf_size = from.bitbuf_size;
    from.requires_seed = true;
    from.bitbuf_size = 0;
    return *this;
}

void RandomInit()
{
    // Invoke RNG code to trigger initialization (if not already performed)
    ProcRand(nullptr, 0, RNGLevel::FAST);

    ReportHardwareRand();
}

std::chrono::microseconds GetExponentialRand(std::chrono::microseconds now, std::chrono::seconds average_interval)
{
    double unscaled = -std::log1p(GetRand(uint64_t{1} << 48) * -0.0000000000000035527136788 /* -1/2^48 */);
    return now + std::chrono::duration_cast<std::chrono::microseconds>(unscaled * average_interval + 0.5us);
}