1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <pow.h>
#include <arith_uint256.h>
#include <chain.h>
#include <primitives/block.h>
#include <uint256.h>
unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock, const Consensus::Params& params)
{
assert(pindexLast != nullptr);
unsigned int nProofOfWorkLimit = UintToArith256(params.powLimit).GetCompact();
// Only change once per difficulty adjustment interval
if ((pindexLast->nHeight+1) % params.DifficultyAdjustmentInterval() != 0)
{
if (params.fPowAllowMinDifficultyBlocks)
{
// Special difficulty rule for testnet:
// If the new block's timestamp is more than 2* 10 minutes
// then allow mining of a min-difficulty block.
if (pblock->GetBlockTime() > pindexLast->GetBlockTime() + params.nPowTargetSpacing*2)
return nProofOfWorkLimit;
else
{
// Return the last non-special-min-difficulty-rules-block
const CBlockIndex* pindex = pindexLast;
while (pindex->pprev && pindex->nHeight % params.DifficultyAdjustmentInterval() != 0 && pindex->nBits == nProofOfWorkLimit)
pindex = pindex->pprev;
return pindex->nBits;
}
}
return pindexLast->nBits;
}
// Go back by what we want to be 14 days worth of blocks
int nHeightFirst = pindexLast->nHeight - (params.DifficultyAdjustmentInterval()-1);
assert(nHeightFirst >= 0);
const CBlockIndex* pindexFirst = pindexLast->GetAncestor(nHeightFirst);
assert(pindexFirst);
return CalculateNextWorkRequired(pindexLast, pindexFirst->GetBlockTime(), params);
}
unsigned int CalculateNextWorkRequired(const CBlockIndex* pindexLast, int64_t nFirstBlockTime, const Consensus::Params& params)
{
if (params.fPowNoRetargeting)
return pindexLast->nBits;
// Limit adjustment step
int64_t nActualTimespan = pindexLast->GetBlockTime() - nFirstBlockTime;
if (nActualTimespan < params.nPowTargetTimespan/4)
nActualTimespan = params.nPowTargetTimespan/4;
if (nActualTimespan > params.nPowTargetTimespan*4)
nActualTimespan = params.nPowTargetTimespan*4;
// Retarget
const arith_uint256 bnPowLimit = UintToArith256(params.powLimit);
arith_uint256 bnNew;
bnNew.SetCompact(pindexLast->nBits);
bnNew *= nActualTimespan;
bnNew /= params.nPowTargetTimespan;
if (bnNew > bnPowLimit)
bnNew = bnPowLimit;
return bnNew.GetCompact();
}
// Check that on difficulty adjustments, the new difficulty does not increase
// or decrease beyond the permitted limits.
bool PermittedDifficultyTransition(const Consensus::Params& params, int64_t height, uint32_t old_nbits, uint32_t new_nbits)
{
if (params.fPowAllowMinDifficultyBlocks) return true;
if (height % params.DifficultyAdjustmentInterval() == 0) {
int64_t smallest_timespan = params.nPowTargetTimespan/4;
int64_t largest_timespan = params.nPowTargetTimespan*4;
const arith_uint256 pow_limit = UintToArith256(params.powLimit);
arith_uint256 observed_new_target;
observed_new_target.SetCompact(new_nbits);
// Calculate the largest difficulty value possible:
arith_uint256 largest_difficulty_target;
largest_difficulty_target.SetCompact(old_nbits);
largest_difficulty_target *= largest_timespan;
largest_difficulty_target /= params.nPowTargetTimespan;
if (largest_difficulty_target > pow_limit) {
largest_difficulty_target = pow_limit;
}
// Round and then compare this new calculated value to what is
// observed.
arith_uint256 maximum_new_target;
maximum_new_target.SetCompact(largest_difficulty_target.GetCompact());
if (maximum_new_target < observed_new_target) return false;
// Calculate the smallest difficulty value possible:
arith_uint256 smallest_difficulty_target;
smallest_difficulty_target.SetCompact(old_nbits);
smallest_difficulty_target *= smallest_timespan;
smallest_difficulty_target /= params.nPowTargetTimespan;
if (smallest_difficulty_target > pow_limit) {
smallest_difficulty_target = pow_limit;
}
// Round and then compare this new calculated value to what is
// observed.
arith_uint256 minimum_new_target;
minimum_new_target.SetCompact(smallest_difficulty_target.GetCompact());
if (minimum_new_target > observed_new_target) return false;
} else if (old_nbits != new_nbits) {
return false;
}
return true;
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits, const Consensus::Params& params)
{
bool fNegative;
bool fOverflow;
arith_uint256 bnTarget;
bnTarget.SetCompact(nBits, &fNegative, &fOverflow);
// Check range
if (fNegative || bnTarget == 0 || fOverflow || bnTarget > UintToArith256(params.powLimit))
return false;
// Check proof of work matches claimed amount
if (UintToArith256(hash) > bnTarget)
return false;
return true;
}
|