aboutsummaryrefslogtreecommitdiff
path: root/src/policy/fees.cpp
blob: a17faa3b99bd39bbd49c1825a67eabec26c65519 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <policy/fees.h>

#include <clientversion.h>
#include <common/system.h>
#include <consensus/amount.h>
#include <kernel/mempool_entry.h>
#include <logging.h>
#include <policy/feerate.h>
#include <primitives/transaction.h>
#include <random.h>
#include <serialize.h>
#include <streams.h>
#include <sync.h>
#include <tinyformat.h>
#include <uint256.h>
#include <util/fs.h>
#include <util/serfloat.h>
#include <util/time.h>

#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <exception>
#include <stdexcept>
#include <utility>

static constexpr double INF_FEERATE = 1e99;

std::string StringForFeeEstimateHorizon(FeeEstimateHorizon horizon)
{
    switch (horizon) {
    case FeeEstimateHorizon::SHORT_HALFLIFE: return "short";
    case FeeEstimateHorizon::MED_HALFLIFE: return "medium";
    case FeeEstimateHorizon::LONG_HALFLIFE: return "long";
    } // no default case, so the compiler can warn about missing cases
    assert(false);
}

namespace {

struct EncodedDoubleFormatter
{
    template<typename Stream> void Ser(Stream &s, double v)
    {
        s << EncodeDouble(v);
    }

    template<typename Stream> void Unser(Stream& s, double& v)
    {
        uint64_t encoded;
        s >> encoded;
        v = DecodeDouble(encoded);
    }
};

} // namespace

/**
 * We will instantiate an instance of this class to track transactions that were
 * included in a block. We will lump transactions into a bucket according to their
 * approximate feerate and then track how long it took for those txs to be included in a block
 *
 * The tracking of unconfirmed (mempool) transactions is completely independent of the
 * historical tracking of transactions that have been confirmed in a block.
 */
class TxConfirmStats
{
private:
    //Define the buckets we will group transactions into
    const std::vector<double>& buckets;              // The upper-bound of the range for the bucket (inclusive)
    const std::map<double, unsigned int>& bucketMap; // Map of bucket upper-bound to index into all vectors by bucket

    // For each bucket X:
    // Count the total # of txs in each bucket
    // Track the historical moving average of this total over blocks
    std::vector<double> txCtAvg;

    // Count the total # of txs confirmed within Y blocks in each bucket
    // Track the historical moving average of these totals over blocks
    std::vector<std::vector<double>> confAvg; // confAvg[Y][X]

    // Track moving avg of txs which have been evicted from the mempool
    // after failing to be confirmed within Y blocks
    std::vector<std::vector<double>> failAvg; // failAvg[Y][X]

    // Sum the total feerate of all tx's in each bucket
    // Track the historical moving average of this total over blocks
    std::vector<double> m_feerate_avg;

    // Combine the conf counts with tx counts to calculate the confirmation % for each Y,X
    // Combine the total value with the tx counts to calculate the avg feerate per bucket

    double decay;

    // Resolution (# of blocks) with which confirmations are tracked
    unsigned int scale;

    // Mempool counts of outstanding transactions
    // For each bucket X, track the number of transactions in the mempool
    // that are unconfirmed for each possible confirmation value Y
    std::vector<std::vector<int> > unconfTxs;  //unconfTxs[Y][X]
    // transactions still unconfirmed after GetMaxConfirms for each bucket
    std::vector<int> oldUnconfTxs;

    void resizeInMemoryCounters(size_t newbuckets);

public:
    /**
     * Create new TxConfirmStats. This is called by BlockPolicyEstimator's
     * constructor with default values.
     * @param defaultBuckets contains the upper limits for the bucket boundaries
     * @param maxPeriods max number of periods to track
     * @param decay how much to decay the historical moving average per block
     */
    TxConfirmStats(const std::vector<double>& defaultBuckets, const std::map<double, unsigned int>& defaultBucketMap,
                   unsigned int maxPeriods, double decay, unsigned int scale);

    /** Roll the circular buffer for unconfirmed txs*/
    void ClearCurrent(unsigned int nBlockHeight);

    /**
     * Record a new transaction data point in the current block stats
     * @param blocksToConfirm the number of blocks it took this transaction to confirm
     * @param val the feerate of the transaction
     * @warning blocksToConfirm is 1-based and has to be >= 1
     */
    void Record(int blocksToConfirm, double val);

    /** Record a new transaction entering the mempool*/
    unsigned int NewTx(unsigned int nBlockHeight, double val);

    /** Remove a transaction from mempool tracking stats*/
    void removeTx(unsigned int entryHeight, unsigned int nBestSeenHeight,
                  unsigned int bucketIndex, bool inBlock);

    /** Update our estimates by decaying our historical moving average and updating
        with the data gathered from the current block */
    void UpdateMovingAverages();

    /**
     * Calculate a feerate estimate.  Find the lowest value bucket (or range of buckets
     * to make sure we have enough data points) whose transactions still have sufficient likelihood
     * of being confirmed within the target number of confirmations
     * @param confTarget target number of confirmations
     * @param sufficientTxVal required average number of transactions per block in a bucket range
     * @param minSuccess the success probability we require
     * @param nBlockHeight the current block height
     */
    double EstimateMedianVal(int confTarget, double sufficientTxVal,
                             double minSuccess, unsigned int nBlockHeight,
                             EstimationResult *result = nullptr) const;

    /** Return the max number of confirms we're tracking */
    unsigned int GetMaxConfirms() const { return scale * confAvg.size(); }

    /** Write state of estimation data to a file*/
    void Write(AutoFile& fileout) const;

    /**
     * Read saved state of estimation data from a file and replace all internal data structures and
     * variables with this state.
     */
    void Read(AutoFile& filein, int nFileVersion, size_t numBuckets);
};


TxConfirmStats::TxConfirmStats(const std::vector<double>& defaultBuckets,
                                const std::map<double, unsigned int>& defaultBucketMap,
                               unsigned int maxPeriods, double _decay, unsigned int _scale)
    : buckets(defaultBuckets), bucketMap(defaultBucketMap), decay(_decay), scale(_scale)
{
    assert(_scale != 0 && "_scale must be non-zero");
    confAvg.resize(maxPeriods);
    failAvg.resize(maxPeriods);
    for (unsigned int i = 0; i < maxPeriods; i++) {
        confAvg[i].resize(buckets.size());
        failAvg[i].resize(buckets.size());
    }

    txCtAvg.resize(buckets.size());
    m_feerate_avg.resize(buckets.size());

    resizeInMemoryCounters(buckets.size());
}

void TxConfirmStats::resizeInMemoryCounters(size_t newbuckets) {
    // newbuckets must be passed in because the buckets referred to during Read have not been updated yet.
    unconfTxs.resize(GetMaxConfirms());
    for (unsigned int i = 0; i < unconfTxs.size(); i++) {
        unconfTxs[i].resize(newbuckets);
    }
    oldUnconfTxs.resize(newbuckets);
}

// Roll the unconfirmed txs circular buffer
void TxConfirmStats::ClearCurrent(unsigned int nBlockHeight)
{
    for (unsigned int j = 0; j < buckets.size(); j++) {
        oldUnconfTxs[j] += unconfTxs[nBlockHeight % unconfTxs.size()][j];
        unconfTxs[nBlockHeight%unconfTxs.size()][j] = 0;
    }
}


void TxConfirmStats::Record(int blocksToConfirm, double feerate)
{
    // blocksToConfirm is 1-based
    if (blocksToConfirm < 1)
        return;
    int periodsToConfirm = (blocksToConfirm + scale - 1) / scale;
    unsigned int bucketindex = bucketMap.lower_bound(feerate)->second;
    for (size_t i = periodsToConfirm; i <= confAvg.size(); i++) {
        confAvg[i - 1][bucketindex]++;
    }
    txCtAvg[bucketindex]++;
    m_feerate_avg[bucketindex] += feerate;
}

void TxConfirmStats::UpdateMovingAverages()
{
    assert(confAvg.size() == failAvg.size());
    for (unsigned int j = 0; j < buckets.size(); j++) {
        for (unsigned int i = 0; i < confAvg.size(); i++) {
            confAvg[i][j] *= decay;
            failAvg[i][j] *= decay;
        }
        m_feerate_avg[j] *= decay;
        txCtAvg[j] *= decay;
    }
}

// returns -1 on error conditions
double TxConfirmStats::EstimateMedianVal(int confTarget, double sufficientTxVal,
                                         double successBreakPoint, unsigned int nBlockHeight,
                                         EstimationResult *result) const
{
    // Counters for a bucket (or range of buckets)
    double nConf = 0; // Number of tx's confirmed within the confTarget
    double totalNum = 0; // Total number of tx's that were ever confirmed
    int extraNum = 0;  // Number of tx's still in mempool for confTarget or longer
    double failNum = 0; // Number of tx's that were never confirmed but removed from the mempool after confTarget
    const int periodTarget = (confTarget + scale - 1) / scale;
    const int maxbucketindex = buckets.size() - 1;

    // We'll combine buckets until we have enough samples.
    // The near and far variables will define the range we've combined
    // The best variables are the last range we saw which still had a high
    // enough confirmation rate to count as success.
    // The cur variables are the current range we're counting.
    unsigned int curNearBucket = maxbucketindex;
    unsigned int bestNearBucket = maxbucketindex;
    unsigned int curFarBucket = maxbucketindex;
    unsigned int bestFarBucket = maxbucketindex;

    // We'll always group buckets into sets that meet sufficientTxVal --
    // this ensures that we're using consistent groups between different
    // confirmation targets.
    double partialNum = 0;

    bool foundAnswer = false;
    unsigned int bins = unconfTxs.size();
    bool newBucketRange = true;
    bool passing = true;
    EstimatorBucket passBucket;
    EstimatorBucket failBucket;

    // Start counting from highest feerate transactions
    for (int bucket = maxbucketindex; bucket >= 0; --bucket) {
        if (newBucketRange) {
            curNearBucket = bucket;
            newBucketRange = false;
        }
        curFarBucket = bucket;
        nConf += confAvg[periodTarget - 1][bucket];
        partialNum += txCtAvg[bucket];
        totalNum += txCtAvg[bucket];
        failNum += failAvg[periodTarget - 1][bucket];
        for (unsigned int confct = confTarget; confct < GetMaxConfirms(); confct++)
            extraNum += unconfTxs[(nBlockHeight - confct) % bins][bucket];
        extraNum += oldUnconfTxs[bucket];
        // If we have enough transaction data points in this range of buckets,
        // we can test for success
        // (Only count the confirmed data points, so that each confirmation count
        // will be looking at the same amount of data and same bucket breaks)

        if (partialNum < sufficientTxVal / (1 - decay)) {
            // the buckets we've added in this round aren't sufficient
            // so keep adding
            continue;
        } else {
            partialNum = 0; // reset for the next range we'll add

            double curPct = nConf / (totalNum + failNum + extraNum);

            // Check to see if we are no longer getting confirmed at the success rate
            if (curPct < successBreakPoint) {
                if (passing == true) {
                    // First time we hit a failure record the failed bucket
                    unsigned int failMinBucket = std::min(curNearBucket, curFarBucket);
                    unsigned int failMaxBucket = std::max(curNearBucket, curFarBucket);
                    failBucket.start = failMinBucket ? buckets[failMinBucket - 1] : 0;
                    failBucket.end = buckets[failMaxBucket];
                    failBucket.withinTarget = nConf;
                    failBucket.totalConfirmed = totalNum;
                    failBucket.inMempool = extraNum;
                    failBucket.leftMempool = failNum;
                    passing = false;
                }
                continue;
            }
            // Otherwise update the cumulative stats, and the bucket variables
            // and reset the counters
            else {
                failBucket = EstimatorBucket(); // Reset any failed bucket, currently passing
                foundAnswer = true;
                passing = true;
                passBucket.withinTarget = nConf;
                nConf = 0;
                passBucket.totalConfirmed = totalNum;
                totalNum = 0;
                passBucket.inMempool = extraNum;
                passBucket.leftMempool = failNum;
                failNum = 0;
                extraNum = 0;
                bestNearBucket = curNearBucket;
                bestFarBucket = curFarBucket;
                newBucketRange = true;
            }
        }
    }

    double median = -1;
    double txSum = 0;

    // Calculate the "average" feerate of the best bucket range that met success conditions
    // Find the bucket with the median transaction and then report the average feerate from that bucket
    // This is a compromise between finding the median which we can't since we don't save all tx's
    // and reporting the average which is less accurate
    unsigned int minBucket = std::min(bestNearBucket, bestFarBucket);
    unsigned int maxBucket = std::max(bestNearBucket, bestFarBucket);
    for (unsigned int j = minBucket; j <= maxBucket; j++) {
        txSum += txCtAvg[j];
    }
    if (foundAnswer && txSum != 0) {
        txSum = txSum / 2;
        for (unsigned int j = minBucket; j <= maxBucket; j++) {
            if (txCtAvg[j] < txSum)
                txSum -= txCtAvg[j];
            else { // we're in the right bucket
                median = m_feerate_avg[j] / txCtAvg[j];
                break;
            }
        }

        passBucket.start = minBucket ? buckets[minBucket-1] : 0;
        passBucket.end = buckets[maxBucket];
    }

    // If we were passing until we reached last few buckets with insufficient data, then report those as failed
    if (passing && !newBucketRange) {
        unsigned int failMinBucket = std::min(curNearBucket, curFarBucket);
        unsigned int failMaxBucket = std::max(curNearBucket, curFarBucket);
        failBucket.start = failMinBucket ? buckets[failMinBucket - 1] : 0;
        failBucket.end = buckets[failMaxBucket];
        failBucket.withinTarget = nConf;
        failBucket.totalConfirmed = totalNum;
        failBucket.inMempool = extraNum;
        failBucket.leftMempool = failNum;
    }

    float passed_within_target_perc = 0.0;
    float failed_within_target_perc = 0.0;
    if ((passBucket.totalConfirmed + passBucket.inMempool + passBucket.leftMempool)) {
        passed_within_target_perc = 100 * passBucket.withinTarget / (passBucket.totalConfirmed + passBucket.inMempool + passBucket.leftMempool);
    }
    if ((failBucket.totalConfirmed + failBucket.inMempool + failBucket.leftMempool)) {
        failed_within_target_perc = 100 * failBucket.withinTarget / (failBucket.totalConfirmed + failBucket.inMempool + failBucket.leftMempool);
    }

    LogDebug(BCLog::ESTIMATEFEE, "FeeEst: %d > %.0f%% decay %.5f: feerate: %g from (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out) Fail: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out)\n",
             confTarget, 100.0 * successBreakPoint, decay,
             median, passBucket.start, passBucket.end,
             passed_within_target_perc,
             passBucket.withinTarget, passBucket.totalConfirmed, passBucket.inMempool, passBucket.leftMempool,
             failBucket.start, failBucket.end,
             failed_within_target_perc,
             failBucket.withinTarget, failBucket.totalConfirmed, failBucket.inMempool, failBucket.leftMempool);


    if (result) {
        result->pass = passBucket;
        result->fail = failBucket;
        result->decay = decay;
        result->scale = scale;
    }
    return median;
}

void TxConfirmStats::Write(AutoFile& fileout) const
{
    fileout << Using<EncodedDoubleFormatter>(decay);
    fileout << scale;
    fileout << Using<VectorFormatter<EncodedDoubleFormatter>>(m_feerate_avg);
    fileout << Using<VectorFormatter<EncodedDoubleFormatter>>(txCtAvg);
    fileout << Using<VectorFormatter<VectorFormatter<EncodedDoubleFormatter>>>(confAvg);
    fileout << Using<VectorFormatter<VectorFormatter<EncodedDoubleFormatter>>>(failAvg);
}

void TxConfirmStats::Read(AutoFile& filein, int nFileVersion, size_t numBuckets)
{
    // Read data file and do some very basic sanity checking
    // buckets and bucketMap are not updated yet, so don't access them
    // If there is a read failure, we'll just discard this entire object anyway
    size_t maxConfirms, maxPeriods;

    // The current version will store the decay with each individual TxConfirmStats and also keep a scale factor
    filein >> Using<EncodedDoubleFormatter>(decay);
    if (decay <= 0 || decay >= 1) {
        throw std::runtime_error("Corrupt estimates file. Decay must be between 0 and 1 (non-inclusive)");
    }
    filein >> scale;
    if (scale == 0) {
        throw std::runtime_error("Corrupt estimates file. Scale must be non-zero");
    }

    filein >> Using<VectorFormatter<EncodedDoubleFormatter>>(m_feerate_avg);
    if (m_feerate_avg.size() != numBuckets) {
        throw std::runtime_error("Corrupt estimates file. Mismatch in feerate average bucket count");
    }
    filein >> Using<VectorFormatter<EncodedDoubleFormatter>>(txCtAvg);
    if (txCtAvg.size() != numBuckets) {
        throw std::runtime_error("Corrupt estimates file. Mismatch in tx count bucket count");
    }
    filein >> Using<VectorFormatter<VectorFormatter<EncodedDoubleFormatter>>>(confAvg);
    maxPeriods = confAvg.size();
    maxConfirms = scale * maxPeriods;

    if (maxConfirms <= 0 || maxConfirms > 6 * 24 * 7) { // one week
        throw std::runtime_error("Corrupt estimates file.  Must maintain estimates for between 1 and 1008 (one week) confirms");
    }
    for (unsigned int i = 0; i < maxPeriods; i++) {
        if (confAvg[i].size() != numBuckets) {
            throw std::runtime_error("Corrupt estimates file. Mismatch in feerate conf average bucket count");
        }
    }

    filein >> Using<VectorFormatter<VectorFormatter<EncodedDoubleFormatter>>>(failAvg);
    if (maxPeriods != failAvg.size()) {
        throw std::runtime_error("Corrupt estimates file. Mismatch in confirms tracked for failures");
    }
    for (unsigned int i = 0; i < maxPeriods; i++) {
        if (failAvg[i].size() != numBuckets) {
            throw std::runtime_error("Corrupt estimates file. Mismatch in one of failure average bucket counts");
        }
    }

    // Resize the current block variables which aren't stored in the data file
    // to match the number of confirms and buckets
    resizeInMemoryCounters(numBuckets);

    LogDebug(BCLog::ESTIMATEFEE, "Reading estimates: %u buckets counting confirms up to %u blocks\n",
             numBuckets, maxConfirms);
}

unsigned int TxConfirmStats::NewTx(unsigned int nBlockHeight, double val)
{
    unsigned int bucketindex = bucketMap.lower_bound(val)->second;
    unsigned int blockIndex = nBlockHeight % unconfTxs.size();
    unconfTxs[blockIndex][bucketindex]++;
    return bucketindex;
}

void TxConfirmStats::removeTx(unsigned int entryHeight, unsigned int nBestSeenHeight, unsigned int bucketindex, bool inBlock)
{
    //nBestSeenHeight is not updated yet for the new block
    int blocksAgo = nBestSeenHeight - entryHeight;
    if (nBestSeenHeight == 0)  // the BlockPolicyEstimator hasn't seen any blocks yet
        blocksAgo = 0;
    if (blocksAgo < 0) {
        LogDebug(BCLog::ESTIMATEFEE, "Blockpolicy error, blocks ago is negative for mempool tx\n");
        return;  //This can't happen because we call this with our best seen height, no entries can have higher
    }

    if (blocksAgo >= (int)unconfTxs.size()) {
        if (oldUnconfTxs[bucketindex] > 0) {
            oldUnconfTxs[bucketindex]--;
        } else {
            LogDebug(BCLog::ESTIMATEFEE, "Blockpolicy error, mempool tx removed from >25 blocks,bucketIndex=%u already\n",
                     bucketindex);
        }
    }
    else {
        unsigned int blockIndex = entryHeight % unconfTxs.size();
        if (unconfTxs[blockIndex][bucketindex] > 0) {
            unconfTxs[blockIndex][bucketindex]--;
        } else {
            LogDebug(BCLog::ESTIMATEFEE, "Blockpolicy error, mempool tx removed from blockIndex=%u,bucketIndex=%u already\n",
                     blockIndex, bucketindex);
        }
    }
    if (!inBlock && (unsigned int)blocksAgo >= scale) { // Only counts as a failure if not confirmed for entire period
        assert(scale != 0);
        unsigned int periodsAgo = blocksAgo / scale;
        for (size_t i = 0; i < periodsAgo && i < failAvg.size(); i++) {
            failAvg[i][bucketindex]++;
        }
    }
}

bool CBlockPolicyEstimator::removeTx(uint256 hash)
{
    LOCK(m_cs_fee_estimator);
    return _removeTx(hash, /*inBlock=*/false);
}

bool CBlockPolicyEstimator::_removeTx(const uint256& hash, bool inBlock)
{
    AssertLockHeld(m_cs_fee_estimator);
    std::map<uint256, TxStatsInfo>::iterator pos = mapMemPoolTxs.find(hash);
    if (pos != mapMemPoolTxs.end()) {
        feeStats->removeTx(pos->second.blockHeight, nBestSeenHeight, pos->second.bucketIndex, inBlock);
        shortStats->removeTx(pos->second.blockHeight, nBestSeenHeight, pos->second.bucketIndex, inBlock);
        longStats->removeTx(pos->second.blockHeight, nBestSeenHeight, pos->second.bucketIndex, inBlock);
        mapMemPoolTxs.erase(hash);
        return true;
    } else {
        return false;
    }
}

CBlockPolicyEstimator::CBlockPolicyEstimator(const fs::path& estimation_filepath, const bool read_stale_estimates)
    : m_estimation_filepath{estimation_filepath}
{
    static_assert(MIN_BUCKET_FEERATE > 0, "Min feerate must be nonzero");
    size_t bucketIndex = 0;

    for (double bucketBoundary = MIN_BUCKET_FEERATE; bucketBoundary <= MAX_BUCKET_FEERATE; bucketBoundary *= FEE_SPACING, bucketIndex++) {
        buckets.push_back(bucketBoundary);
        bucketMap[bucketBoundary] = bucketIndex;
    }
    buckets.push_back(INF_FEERATE);
    bucketMap[INF_FEERATE] = bucketIndex;
    assert(bucketMap.size() == buckets.size());

    feeStats = std::unique_ptr<TxConfirmStats>(new TxConfirmStats(buckets, bucketMap, MED_BLOCK_PERIODS, MED_DECAY, MED_SCALE));
    shortStats = std::unique_ptr<TxConfirmStats>(new TxConfirmStats(buckets, bucketMap, SHORT_BLOCK_PERIODS, SHORT_DECAY, SHORT_SCALE));
    longStats = std::unique_ptr<TxConfirmStats>(new TxConfirmStats(buckets, bucketMap, LONG_BLOCK_PERIODS, LONG_DECAY, LONG_SCALE));

    AutoFile est_file{fsbridge::fopen(m_estimation_filepath, "rb")};

    if (est_file.IsNull()) {
        LogPrintf("%s is not found. Continue anyway.\n", fs::PathToString(m_estimation_filepath));
        return;
    }

    std::chrono::hours file_age = GetFeeEstimatorFileAge();
    if (file_age > MAX_FILE_AGE && !read_stale_estimates) {
        LogPrintf("Fee estimation file %s too old (age=%lld > %lld hours) and will not be used to avoid serving stale estimates.\n", fs::PathToString(m_estimation_filepath), Ticks<std::chrono::hours>(file_age), Ticks<std::chrono::hours>(MAX_FILE_AGE));
        return;
    }

    if (!Read(est_file)) {
        LogPrintf("Failed to read fee estimates from %s. Continue anyway.\n", fs::PathToString(m_estimation_filepath));
    }
}

CBlockPolicyEstimator::~CBlockPolicyEstimator() = default;

void CBlockPolicyEstimator::TransactionAddedToMempool(const NewMempoolTransactionInfo& tx, uint64_t /*unused*/)
{
    processTransaction(tx);
}

void CBlockPolicyEstimator::TransactionRemovedFromMempool(const CTransactionRef& tx, MemPoolRemovalReason /*unused*/, uint64_t /*unused*/)
{
    removeTx(tx->GetHash());
}

void CBlockPolicyEstimator::MempoolTransactionsRemovedForBlock(const std::vector<RemovedMempoolTransactionInfo>& txs_removed_for_block, unsigned int nBlockHeight)
{
    processBlock(txs_removed_for_block, nBlockHeight);
}

void CBlockPolicyEstimator::processTransaction(const NewMempoolTransactionInfo& tx)
{
    LOCK(m_cs_fee_estimator);
    const unsigned int txHeight = tx.info.txHeight;
    const auto& hash = tx.info.m_tx->GetHash();
    if (mapMemPoolTxs.count(hash)) {
        LogDebug(BCLog::ESTIMATEFEE, "Blockpolicy error mempool tx %s already being tracked\n",
                 hash.ToString());
        return;
    }

    if (txHeight != nBestSeenHeight) {
        // Ignore side chains and re-orgs; assuming they are random they don't
        // affect the estimate.  We'll potentially double count transactions in 1-block reorgs.
        // Ignore txs if BlockPolicyEstimator is not in sync with ActiveChain().Tip().
        // It will be synced next time a block is processed.
        return;
    }
    // This transaction should only count for fee estimation if:
    // - it's not being re-added during a reorg which bypasses typical mempool fee limits
    // - the node is not behind
    // - the transaction is not dependent on any other transactions in the mempool
    // - it's not part of a package.
    const bool validForFeeEstimation = !tx.m_mempool_limit_bypassed && !tx.m_submitted_in_package && tx.m_chainstate_is_current && tx.m_has_no_mempool_parents;

    // Only want to be updating estimates when our blockchain is synced,
    // otherwise we'll miscalculate how many blocks its taking to get included.
    if (!validForFeeEstimation) {
        untrackedTxs++;
        return;
    }
    trackedTxs++;

    // Feerates are stored and reported as BTC-per-kb:
    const CFeeRate feeRate(tx.info.m_fee, tx.info.m_virtual_transaction_size);

    mapMemPoolTxs[hash].blockHeight = txHeight;
    unsigned int bucketIndex = feeStats->NewTx(txHeight, static_cast<double>(feeRate.GetFeePerK()));
    mapMemPoolTxs[hash].bucketIndex = bucketIndex;
    unsigned int bucketIndex2 = shortStats->NewTx(txHeight, static_cast<double>(feeRate.GetFeePerK()));
    assert(bucketIndex == bucketIndex2);
    unsigned int bucketIndex3 = longStats->NewTx(txHeight, static_cast<double>(feeRate.GetFeePerK()));
    assert(bucketIndex == bucketIndex3);
}

bool CBlockPolicyEstimator::processBlockTx(unsigned int nBlockHeight, const RemovedMempoolTransactionInfo& tx)
{
    AssertLockHeld(m_cs_fee_estimator);
    if (!_removeTx(tx.info.m_tx->GetHash(), true)) {
        // This transaction wasn't being tracked for fee estimation
        return false;
    }

    // How many blocks did it take for miners to include this transaction?
    // blocksToConfirm is 1-based, so a transaction included in the earliest
    // possible block has confirmation count of 1
    int blocksToConfirm = nBlockHeight - tx.info.txHeight;
    if (blocksToConfirm <= 0) {
        // This can't happen because we don't process transactions from a block with a height
        // lower than our greatest seen height
        LogDebug(BCLog::ESTIMATEFEE, "Blockpolicy error Transaction had negative blocksToConfirm\n");
        return false;
    }

    // Feerates are stored and reported as BTC-per-kb:
    CFeeRate feeRate(tx.info.m_fee, tx.info.m_virtual_transaction_size);

    feeStats->Record(blocksToConfirm, static_cast<double>(feeRate.GetFeePerK()));
    shortStats->Record(blocksToConfirm, static_cast<double>(feeRate.GetFeePerK()));
    longStats->Record(blocksToConfirm, static_cast<double>(feeRate.GetFeePerK()));
    return true;
}

void CBlockPolicyEstimator::processBlock(const std::vector<RemovedMempoolTransactionInfo>& txs_removed_for_block,
                                         unsigned int nBlockHeight)
{
    LOCK(m_cs_fee_estimator);
    if (nBlockHeight <= nBestSeenHeight) {
        // Ignore side chains and re-orgs; assuming they are random
        // they don't affect the estimate.
        // And if an attacker can re-org the chain at will, then
        // you've got much bigger problems than "attacker can influence
        // transaction fees."
        return;
    }

    // Must update nBestSeenHeight in sync with ClearCurrent so that
    // calls to removeTx (via processBlockTx) correctly calculate age
    // of unconfirmed txs to remove from tracking.
    nBestSeenHeight = nBlockHeight;

    // Update unconfirmed circular buffer
    feeStats->ClearCurrent(nBlockHeight);
    shortStats->ClearCurrent(nBlockHeight);
    longStats->ClearCurrent(nBlockHeight);

    // Decay all exponential averages
    feeStats->UpdateMovingAverages();
    shortStats->UpdateMovingAverages();
    longStats->UpdateMovingAverages();

    unsigned int countedTxs = 0;
    // Update averages with data points from current block
    for (const auto& tx : txs_removed_for_block) {
        if (processBlockTx(nBlockHeight, tx))
            countedTxs++;
    }

    if (firstRecordedHeight == 0 && countedTxs > 0) {
        firstRecordedHeight = nBestSeenHeight;
        LogDebug(BCLog::ESTIMATEFEE, "Blockpolicy first recorded height %u\n", firstRecordedHeight);
    }


    LogDebug(BCLog::ESTIMATEFEE, "Blockpolicy estimates updated by %u of %u block txs, since last block %u of %u tracked, mempool map size %u, max target %u from %s\n",
             countedTxs, txs_removed_for_block.size(), trackedTxs, trackedTxs + untrackedTxs, mapMemPoolTxs.size(),
             MaxUsableEstimate(), HistoricalBlockSpan() > BlockSpan() ? "historical" : "current");

    trackedTxs = 0;
    untrackedTxs = 0;
}

CFeeRate CBlockPolicyEstimator::estimateFee(int confTarget) const
{
    // It's not possible to get reasonable estimates for confTarget of 1
    if (confTarget <= 1)
        return CFeeRate(0);

    return estimateRawFee(confTarget, DOUBLE_SUCCESS_PCT, FeeEstimateHorizon::MED_HALFLIFE);
}

CFeeRate CBlockPolicyEstimator::estimateRawFee(int confTarget, double successThreshold, FeeEstimateHorizon horizon, EstimationResult* result) const
{
    TxConfirmStats* stats = nullptr;
    double sufficientTxs = SUFFICIENT_FEETXS;
    switch (horizon) {
    case FeeEstimateHorizon::SHORT_HALFLIFE: {
        stats = shortStats.get();
        sufficientTxs = SUFFICIENT_TXS_SHORT;
        break;
    }
    case FeeEstimateHorizon::MED_HALFLIFE: {
        stats = feeStats.get();
        break;
    }
    case FeeEstimateHorizon::LONG_HALFLIFE: {
        stats = longStats.get();
        break;
    }
    } // no default case, so the compiler can warn about missing cases
    assert(stats);

    LOCK(m_cs_fee_estimator);
    // Return failure if trying to analyze a target we're not tracking
    if (confTarget <= 0 || (unsigned int)confTarget > stats->GetMaxConfirms())
        return CFeeRate(0);
    if (successThreshold > 1)
        return CFeeRate(0);

    double median = stats->EstimateMedianVal(confTarget, sufficientTxs, successThreshold, nBestSeenHeight, result);

    if (median < 0)
        return CFeeRate(0);

    return CFeeRate(llround(median));
}

unsigned int CBlockPolicyEstimator::HighestTargetTracked(FeeEstimateHorizon horizon) const
{
    LOCK(m_cs_fee_estimator);
    switch (horizon) {
    case FeeEstimateHorizon::SHORT_HALFLIFE: {
        return shortStats->GetMaxConfirms();
    }
    case FeeEstimateHorizon::MED_HALFLIFE: {
        return feeStats->GetMaxConfirms();
    }
    case FeeEstimateHorizon::LONG_HALFLIFE: {
        return longStats->GetMaxConfirms();
    }
    } // no default case, so the compiler can warn about missing cases
    assert(false);
}

unsigned int CBlockPolicyEstimator::BlockSpan() const
{
    if (firstRecordedHeight == 0) return 0;
    assert(nBestSeenHeight >= firstRecordedHeight);

    return nBestSeenHeight - firstRecordedHeight;
}

unsigned int CBlockPolicyEstimator::HistoricalBlockSpan() const
{
    if (historicalFirst == 0) return 0;
    assert(historicalBest >= historicalFirst);

    if (nBestSeenHeight - historicalBest > OLDEST_ESTIMATE_HISTORY) return 0;

    return historicalBest - historicalFirst;
}

unsigned int CBlockPolicyEstimator::MaxUsableEstimate() const
{
    // Block spans are divided by 2 to make sure there are enough potential failing data points for the estimate
    return std::min(longStats->GetMaxConfirms(), std::max(BlockSpan(), HistoricalBlockSpan()) / 2);
}

/** Return a fee estimate at the required successThreshold from the shortest
 * time horizon which tracks confirmations up to the desired target.  If
 * checkShorterHorizon is requested, also allow short time horizon estimates
 * for a lower target to reduce the given answer */
double CBlockPolicyEstimator::estimateCombinedFee(unsigned int confTarget, double successThreshold, bool checkShorterHorizon, EstimationResult *result) const
{
    double estimate = -1;
    if (confTarget >= 1 && confTarget <= longStats->GetMaxConfirms()) {
        // Find estimate from shortest time horizon possible
        if (confTarget <= shortStats->GetMaxConfirms()) { // short horizon
            estimate = shortStats->EstimateMedianVal(confTarget, SUFFICIENT_TXS_SHORT, successThreshold, nBestSeenHeight, result);
        }
        else if (confTarget <= feeStats->GetMaxConfirms()) { // medium horizon
            estimate = feeStats->EstimateMedianVal(confTarget, SUFFICIENT_FEETXS, successThreshold, nBestSeenHeight, result);
        }
        else { // long horizon
            estimate = longStats->EstimateMedianVal(confTarget, SUFFICIENT_FEETXS, successThreshold, nBestSeenHeight, result);
        }
        if (checkShorterHorizon) {
            EstimationResult tempResult;
            // If a lower confTarget from a more recent horizon returns a lower answer use it.
            if (confTarget > feeStats->GetMaxConfirms()) {
                double medMax = feeStats->EstimateMedianVal(feeStats->GetMaxConfirms(), SUFFICIENT_FEETXS, successThreshold, nBestSeenHeight, &tempResult);
                if (medMax > 0 && (estimate == -1 || medMax < estimate)) {
                    estimate = medMax;
                    if (result) *result = tempResult;
                }
            }
            if (confTarget > shortStats->GetMaxConfirms()) {
                double shortMax = shortStats->EstimateMedianVal(shortStats->GetMaxConfirms(), SUFFICIENT_TXS_SHORT, successThreshold, nBestSeenHeight, &tempResult);
                if (shortMax > 0 && (estimate == -1 || shortMax < estimate)) {
                    estimate = shortMax;
                    if (result) *result = tempResult;
                }
            }
        }
    }
    return estimate;
}

/** Ensure that for a conservative estimate, the DOUBLE_SUCCESS_PCT is also met
 * at 2 * target for any longer time horizons.
 */
double CBlockPolicyEstimator::estimateConservativeFee(unsigned int doubleTarget, EstimationResult *result) const
{
    double estimate = -1;
    EstimationResult tempResult;
    if (doubleTarget <= shortStats->GetMaxConfirms()) {
        estimate = feeStats->EstimateMedianVal(doubleTarget, SUFFICIENT_FEETXS, DOUBLE_SUCCESS_PCT, nBestSeenHeight, result);
    }
    if (doubleTarget <= feeStats->GetMaxConfirms()) {
        double longEstimate = longStats->EstimateMedianVal(doubleTarget, SUFFICIENT_FEETXS, DOUBLE_SUCCESS_PCT, nBestSeenHeight, &tempResult);
        if (longEstimate > estimate) {
            estimate = longEstimate;
            if (result) *result = tempResult;
        }
    }
    return estimate;
}

/** estimateSmartFee returns the max of the feerates calculated with a 60%
 * threshold required at target / 2, an 85% threshold required at target and a
 * 95% threshold required at 2 * target.  Each calculation is performed at the
 * shortest time horizon which tracks the required target.  Conservative
 * estimates, however, required the 95% threshold at 2 * target be met for any
 * longer time horizons also.
 */
CFeeRate CBlockPolicyEstimator::estimateSmartFee(int confTarget, FeeCalculation *feeCalc, bool conservative) const
{
    LOCK(m_cs_fee_estimator);

    if (feeCalc) {
        feeCalc->desiredTarget = confTarget;
        feeCalc->returnedTarget = confTarget;
    }

    double median = -1;
    EstimationResult tempResult;

    // Return failure if trying to analyze a target we're not tracking
    if (confTarget <= 0 || (unsigned int)confTarget > longStats->GetMaxConfirms()) {
        return CFeeRate(0);  // error condition
    }

    // It's not possible to get reasonable estimates for confTarget of 1
    if (confTarget == 1) confTarget = 2;

    unsigned int maxUsableEstimate = MaxUsableEstimate();
    if ((unsigned int)confTarget > maxUsableEstimate) {
        confTarget = maxUsableEstimate;
    }
    if (feeCalc) feeCalc->returnedTarget = confTarget;

    if (confTarget <= 1) return CFeeRate(0); // error condition

    assert(confTarget > 0); //estimateCombinedFee and estimateConservativeFee take unsigned ints
    /** true is passed to estimateCombined fee for target/2 and target so
     * that we check the max confirms for shorter time horizons as well.
     * This is necessary to preserve monotonically increasing estimates.
     * For non-conservative estimates we do the same thing for 2*target, but
     * for conservative estimates we want to skip these shorter horizons
     * checks for 2*target because we are taking the max over all time
     * horizons so we already have monotonically increasing estimates and
     * the purpose of conservative estimates is not to let short term
     * fluctuations lower our estimates by too much.
     */
    double halfEst = estimateCombinedFee(confTarget/2, HALF_SUCCESS_PCT, true, &tempResult);
    if (feeCalc) {
        feeCalc->est = tempResult;
        feeCalc->reason = FeeReason::HALF_ESTIMATE;
    }
    median = halfEst;
    double actualEst = estimateCombinedFee(confTarget, SUCCESS_PCT, true, &tempResult);
    if (actualEst > median) {
        median = actualEst;
        if (feeCalc) {
            feeCalc->est = tempResult;
            feeCalc->reason = FeeReason::FULL_ESTIMATE;
        }
    }
    double doubleEst = estimateCombinedFee(2 * confTarget, DOUBLE_SUCCESS_PCT, !conservative, &tempResult);
    if (doubleEst > median) {
        median = doubleEst;
        if (feeCalc) {
            feeCalc->est = tempResult;
            feeCalc->reason = FeeReason::DOUBLE_ESTIMATE;
        }
    }

    if (conservative || median == -1) {
        double consEst =  estimateConservativeFee(2 * confTarget, &tempResult);
        if (consEst > median) {
            median = consEst;
            if (feeCalc) {
                feeCalc->est = tempResult;
                feeCalc->reason = FeeReason::CONSERVATIVE;
            }
        }
    }

    if (median < 0) return CFeeRate(0); // error condition

    return CFeeRate(llround(median));
}

void CBlockPolicyEstimator::Flush() {
    FlushUnconfirmed();
    FlushFeeEstimates();
}

void CBlockPolicyEstimator::FlushFeeEstimates()
{
    AutoFile est_file{fsbridge::fopen(m_estimation_filepath, "wb")};
    if (est_file.IsNull() || !Write(est_file)) {
        LogPrintf("Failed to write fee estimates to %s. Continue anyway.\n", fs::PathToString(m_estimation_filepath));
    } else {
        LogPrintf("Flushed fee estimates to %s.\n", fs::PathToString(m_estimation_filepath.filename()));
    }
}

bool CBlockPolicyEstimator::Write(AutoFile& fileout) const
{
    try {
        LOCK(m_cs_fee_estimator);
        fileout << 149900; // version required to read: 0.14.99 or later
        fileout << CLIENT_VERSION; // version that wrote the file
        fileout << nBestSeenHeight;
        if (BlockSpan() > HistoricalBlockSpan()/2) {
            fileout << firstRecordedHeight << nBestSeenHeight;
        }
        else {
            fileout << historicalFirst << historicalBest;
        }
        fileout << Using<VectorFormatter<EncodedDoubleFormatter>>(buckets);
        feeStats->Write(fileout);
        shortStats->Write(fileout);
        longStats->Write(fileout);
    }
    catch (const std::exception&) {
        LogPrintf("CBlockPolicyEstimator::Write(): unable to write policy estimator data (non-fatal)\n");
        return false;
    }
    return true;
}

bool CBlockPolicyEstimator::Read(AutoFile& filein)
{
    try {
        LOCK(m_cs_fee_estimator);
        int nVersionRequired, nVersionThatWrote;
        filein >> nVersionRequired >> nVersionThatWrote;
        if (nVersionRequired > CLIENT_VERSION) {
            throw std::runtime_error(strprintf("up-version (%d) fee estimate file", nVersionRequired));
        }

        // Read fee estimates file into temporary variables so existing data
        // structures aren't corrupted if there is an exception.
        unsigned int nFileBestSeenHeight;
        filein >> nFileBestSeenHeight;

        if (nVersionRequired < 149900) {
            LogPrintf("%s: incompatible old fee estimation data (non-fatal). Version: %d\n", __func__, nVersionRequired);
        } else { // New format introduced in 149900
            unsigned int nFileHistoricalFirst, nFileHistoricalBest;
            filein >> nFileHistoricalFirst >> nFileHistoricalBest;
            if (nFileHistoricalFirst > nFileHistoricalBest || nFileHistoricalBest > nFileBestSeenHeight) {
                throw std::runtime_error("Corrupt estimates file. Historical block range for estimates is invalid");
            }
            std::vector<double> fileBuckets;
            filein >> Using<VectorFormatter<EncodedDoubleFormatter>>(fileBuckets);
            size_t numBuckets = fileBuckets.size();
            if (numBuckets <= 1 || numBuckets > 1000) {
                throw std::runtime_error("Corrupt estimates file. Must have between 2 and 1000 feerate buckets");
            }

            std::unique_ptr<TxConfirmStats> fileFeeStats(new TxConfirmStats(buckets, bucketMap, MED_BLOCK_PERIODS, MED_DECAY, MED_SCALE));
            std::unique_ptr<TxConfirmStats> fileShortStats(new TxConfirmStats(buckets, bucketMap, SHORT_BLOCK_PERIODS, SHORT_DECAY, SHORT_SCALE));
            std::unique_ptr<TxConfirmStats> fileLongStats(new TxConfirmStats(buckets, bucketMap, LONG_BLOCK_PERIODS, LONG_DECAY, LONG_SCALE));
            fileFeeStats->Read(filein, nVersionThatWrote, numBuckets);
            fileShortStats->Read(filein, nVersionThatWrote, numBuckets);
            fileLongStats->Read(filein, nVersionThatWrote, numBuckets);

            // Fee estimates file parsed correctly
            // Copy buckets from file and refresh our bucketmap
            buckets = fileBuckets;
            bucketMap.clear();
            for (unsigned int i = 0; i < buckets.size(); i++) {
                bucketMap[buckets[i]] = i;
            }

            // Destroy old TxConfirmStats and point to new ones that already reference buckets and bucketMap
            feeStats = std::move(fileFeeStats);
            shortStats = std::move(fileShortStats);
            longStats = std::move(fileLongStats);

            nBestSeenHeight = nFileBestSeenHeight;
            historicalFirst = nFileHistoricalFirst;
            historicalBest = nFileHistoricalBest;
        }
    }
    catch (const std::exception& e) {
        LogPrintf("CBlockPolicyEstimator::Read(): unable to read policy estimator data (non-fatal): %s\n",e.what());
        return false;
    }
    return true;
}

void CBlockPolicyEstimator::FlushUnconfirmed()
{
    const auto startclear{SteadyClock::now()};
    LOCK(m_cs_fee_estimator);
    size_t num_entries = mapMemPoolTxs.size();
    // Remove every entry in mapMemPoolTxs
    while (!mapMemPoolTxs.empty()) {
        auto mi = mapMemPoolTxs.begin();
        _removeTx(mi->first, false); // this calls erase() on mapMemPoolTxs
    }
    const auto endclear{SteadyClock::now()};
    LogDebug(BCLog::ESTIMATEFEE, "Recorded %u unconfirmed txs from mempool in %.3fs\n", num_entries, Ticks<SecondsDouble>(endclear - startclear));
}

std::chrono::hours CBlockPolicyEstimator::GetFeeEstimatorFileAge()
{
    auto file_time{fs::last_write_time(m_estimation_filepath)};
    auto now{fs::file_time_type::clock::now()};
    return std::chrono::duration_cast<std::chrono::hours>(now - file_time);
}

static std::set<double> MakeFeeSet(const CFeeRate& min_incremental_fee,
                                   double max_filter_fee_rate,
                                   double fee_filter_spacing)
{
    std::set<double> fee_set;

    const CAmount min_fee_limit{std::max(CAmount(1), min_incremental_fee.GetFeePerK() / 2)};
    fee_set.insert(0);
    for (double bucket_boundary = min_fee_limit;
         bucket_boundary <= max_filter_fee_rate;
         bucket_boundary *= fee_filter_spacing) {

        fee_set.insert(bucket_boundary);
    }

    return fee_set;
}

FeeFilterRounder::FeeFilterRounder(const CFeeRate& minIncrementalFee, FastRandomContext& rng)
    : m_fee_set{MakeFeeSet(minIncrementalFee, MAX_FILTER_FEERATE, FEE_FILTER_SPACING)},
      insecure_rand{rng}
{
}

CAmount FeeFilterRounder::round(CAmount currentMinFee)
{
    AssertLockNotHeld(m_insecure_rand_mutex);
    std::set<double>::iterator it = m_fee_set.lower_bound(currentMinFee);
    if (it == m_fee_set.end() ||
        (it != m_fee_set.begin() &&
         WITH_LOCK(m_insecure_rand_mutex, return insecure_rand.rand32()) % 3 != 0)) {
        --it;
    }
    return static_cast<CAmount>(*it);
}