aboutsummaryrefslogtreecommitdiff
path: root/src/leveldb/doc/index.md
blob: be8569692bb054676bf451e06a8dd4980c32edca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
leveldb
=======

_Jeff Dean, Sanjay Ghemawat_

The leveldb library provides a persistent key value store. Keys and values are
arbitrary byte arrays.  The keys are ordered within the key value store
according to a user-specified comparator function.

## Opening A Database

A leveldb database has a name which corresponds to a file system directory. All
of the contents of database are stored in this directory. The following example
shows how to open a database, creating it if necessary:

```c++
#include <cassert>
#include "leveldb/db.h"

leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &db);
assert(status.ok());
...
```

If you want to raise an error if the database already exists, add the following
line before the `leveldb::DB::Open` call:

```c++
options.error_if_exists = true;
```

## Status

You may have noticed the `leveldb::Status` type above. Values of this type are
returned by most functions in leveldb that may encounter an error. You can check
if such a result is ok, and also print an associated error message:

```c++
leveldb::Status s = ...;
if (!s.ok()) cerr << s.ToString() << endl;
```

## Closing A Database

When you are done with a database, just delete the database object. Example:

```c++
... open the db as described above ...
... do something with db ...
delete db;
```

## Reads And Writes

The database provides Put, Delete, and Get methods to modify/query the database.
For example, the following code moves the value stored under key1 to key2.

```c++
std::string value;
leveldb::Status s = db->Get(leveldb::ReadOptions(), key1, &value);
if (s.ok()) s = db->Put(leveldb::WriteOptions(), key2, value);
if (s.ok()) s = db->Delete(leveldb::WriteOptions(), key1);
```

## Atomic Updates

Note that if the process dies after the Put of key2 but before the delete of
key1, the same value may be left stored under multiple keys. Such problems can
be avoided by using the `WriteBatch` class to atomically apply a set of updates:

```c++
#include "leveldb/write_batch.h"
...
std::string value;
leveldb::Status s = db->Get(leveldb::ReadOptions(), key1, &value);
if (s.ok()) {
  leveldb::WriteBatch batch;
  batch.Delete(key1);
  batch.Put(key2, value);
  s = db->Write(leveldb::WriteOptions(), &batch);
}
```

The `WriteBatch` holds a sequence of edits to be made to the database, and these
edits within the batch are applied in order. Note that we called Delete before
Put so that if key1 is identical to key2, we do not end up erroneously dropping
the value entirely.

Apart from its atomicity benefits, `WriteBatch` may also be used to speed up
bulk updates by placing lots of individual mutations into the same batch.

## Synchronous Writes

By default, each write to leveldb is asynchronous: it returns after pushing the
write from the process into the operating system. The transfer from operating
system memory to the underlying persistent storage happens asynchronously. The
sync flag can be turned on for a particular write to make the write operation
not return until the data being written has been pushed all the way to
persistent storage. (On Posix systems, this is implemented by calling either
`fsync(...)` or `fdatasync(...)` or `msync(..., MS_SYNC)` before the write
operation returns.)

```c++
leveldb::WriteOptions write_options;
write_options.sync = true;
db->Put(write_options, ...);
```

Asynchronous writes are often more than a thousand times as fast as synchronous
writes. The downside of asynchronous writes is that a crash of the machine may
cause the last few updates to be lost. Note that a crash of just the writing
process (i.e., not a reboot) will not cause any loss since even when sync is
false, an update is pushed from the process memory into the operating system
before it is considered done.

Asynchronous writes can often be used safely. For example, when loading a large
amount of data into the database you can handle lost updates by restarting the
bulk load after a crash. A hybrid scheme is also possible where every Nth write
is synchronous, and in the event of a crash, the bulk load is restarted just
after the last synchronous write finished by the previous run. (The synchronous
write can update a marker that describes where to restart on a crash.)

`WriteBatch` provides an alternative to asynchronous writes. Multiple updates
may be placed in the same WriteBatch and applied together using a synchronous
write (i.e., `write_options.sync` is set to true). The extra cost of the
synchronous write will be amortized across all of the writes in the batch.

## Concurrency

A database may only be opened by one process at a time. The leveldb
implementation acquires a lock from the operating system to prevent misuse.
Within a single process, the same `leveldb::DB` object may be safely shared by
multiple concurrent threads. I.e., different threads may write into or fetch
iterators or call Get on the same database without any external synchronization
(the leveldb implementation will automatically do the required synchronization).
However other objects (like Iterator and `WriteBatch`) may require external
synchronization. If two threads share such an object, they must protect access
to it using their own locking protocol. More details are available in the public
header files.

## Iteration

The following example demonstrates how to print all key,value pairs in a
database.

```c++
leveldb::Iterator* it = db->NewIterator(leveldb::ReadOptions());
for (it->SeekToFirst(); it->Valid(); it->Next()) {
  cout << it->key().ToString() << ": "  << it->value().ToString() << endl;
}
assert(it->status().ok());  // Check for any errors found during the scan
delete it;
```

The following variation shows how to process just the keys in the range
[start,limit):

```c++
for (it->Seek(start);
   it->Valid() && it->key().ToString() < limit;
   it->Next()) {
  ...
}
```

You can also process entries in reverse order. (Caveat: reverse iteration may be
somewhat slower than forward iteration.)

```c++
for (it->SeekToLast(); it->Valid(); it->Prev()) {
  ...
}
```

## Snapshots

Snapshots provide consistent read-only views over the entire state of the
key-value store.  `ReadOptions::snapshot` may be non-NULL to indicate that a
read should operate on a particular version of the DB state. If
`ReadOptions::snapshot` is NULL, the read will operate on an implicit snapshot
of the current state.

Snapshots are created by the `DB::GetSnapshot()` method:

```c++
leveldb::ReadOptions options;
options.snapshot = db->GetSnapshot();
... apply some updates to db ...
leveldb::Iterator* iter = db->NewIterator(options);
... read using iter to view the state when the snapshot was created ...
delete iter;
db->ReleaseSnapshot(options.snapshot);
```

Note that when a snapshot is no longer needed, it should be released using the
`DB::ReleaseSnapshot` interface. This allows the implementation to get rid of
state that was being maintained just to support reading as of that snapshot.

## Slice

The return value of the `it->key()` and `it->value()` calls above are instances
of the `leveldb::Slice` type. Slice is a simple structure that contains a length
and a pointer to an external byte array. Returning a Slice is a cheaper
alternative to returning a `std::string` since we do not need to copy
potentially large keys and values. In addition, leveldb methods do not return
null-terminated C-style strings since leveldb keys and values are allowed to
contain `'\0'` bytes.

C++ strings and null-terminated C-style strings can be easily converted to a
Slice:

```c++
leveldb::Slice s1 = "hello";

std::string str("world");
leveldb::Slice s2 = str;
```

A Slice can be easily converted back to a C++ string:

```c++
std::string str = s1.ToString();
assert(str == std::string("hello"));
```

Be careful when using Slices since it is up to the caller to ensure that the
external byte array into which the Slice points remains live while the Slice is
in use. For example, the following is buggy:

```c++
leveldb::Slice slice;
if (...) {
  std::string str = ...;
  slice = str;
}
Use(slice);
```

When the if statement goes out of scope, str will be destroyed and the backing
storage for slice will disappear.

## Comparators

The preceding examples used the default ordering function for key, which orders
bytes lexicographically. You can however supply a custom comparator when opening
a database.  For example, suppose each database key consists of two numbers and
we should sort by the first number, breaking ties by the second number. First,
define a proper subclass of `leveldb::Comparator` that expresses these rules:

```c++
class TwoPartComparator : public leveldb::Comparator {
 public:
  // Three-way comparison function:
  //   if a < b: negative result
  //   if a > b: positive result
  //   else: zero result
  int Compare(const leveldb::Slice& a, const leveldb::Slice& b) const {
    int a1, a2, b1, b2;
    ParseKey(a, &a1, &a2);
    ParseKey(b, &b1, &b2);
    if (a1 < b1) return -1;
    if (a1 > b1) return +1;
    if (a2 < b2) return -1;
    if (a2 > b2) return +1;
    return 0;
  }

  // Ignore the following methods for now:
  const char* Name() const { return "TwoPartComparator"; }
  void FindShortestSeparator(std::string*, const leveldb::Slice&) const {}
  void FindShortSuccessor(std::string*) const {}
};
```

Now create a database using this custom comparator:

```c++
TwoPartComparator cmp;
leveldb::DB* db;
leveldb::Options options;
options.create_if_missing = true;
options.comparator = &cmp;
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &db);
...
```

### Backwards compatibility

The result of the comparator's Name method is attached to the database when it
is created, and is checked on every subsequent database open. If the name
changes, the `leveldb::DB::Open` call will fail. Therefore, change the name if
and only if the new key format and comparison function are incompatible with
existing databases, and it is ok to discard the contents of all existing
databases.

You can however still gradually evolve your key format over time with a little
bit of pre-planning. For example, you could store a version number at the end of
each key (one byte should suffice for most uses). When you wish to switch to a
new key format (e.g., adding an optional third part to the keys processed by
`TwoPartComparator`), (a) keep the same comparator name (b) increment the
version number for new keys (c) change the comparator function so it uses the
version numbers found in the keys to decide how to interpret them.

## Performance

Performance can be tuned by changing the default values of the types defined in
`include/leveldb/options.h`.

### Block size

leveldb groups adjacent keys together into the same block and such a block is
the unit of transfer to and from persistent storage. The default block size is
approximately 4096 uncompressed bytes.  Applications that mostly do bulk scans
over the contents of the database may wish to increase this size. Applications
that do a lot of point reads of small values may wish to switch to a smaller
block size if performance measurements indicate an improvement. There isn't much
benefit in using blocks smaller than one kilobyte, or larger than a few
megabytes. Also note that compression will be more effective with larger block
sizes.

### Compression

Each block is individually compressed before being written to persistent
storage. Compression is on by default since the default compression method is
very fast, and is automatically disabled for uncompressible data. In rare cases,
applications may want to disable compression entirely, but should only do so if
benchmarks show a performance improvement:

```c++
leveldb::Options options;
options.compression = leveldb::kNoCompression;
... leveldb::DB::Open(options, name, ...) ....
```

### Cache

The contents of the database are stored in a set of files in the filesystem and
each file stores a sequence of compressed blocks. If options.cache is non-NULL,
it is used to cache frequently used uncompressed block contents.

```c++
#include "leveldb/cache.h"

leveldb::Options options;
options.cache = leveldb::NewLRUCache(100 * 1048576);  // 100MB cache
leveldb::DB* db;
leveldb::DB::Open(options, name, &db);
... use the db ...
delete db
delete options.cache;
```

Note that the cache holds uncompressed data, and therefore it should be sized
according to application level data sizes, without any reduction from
compression. (Caching of compressed blocks is left to the operating system
buffer cache, or any custom Env implementation provided by the client.)

When performing a bulk read, the application may wish to disable caching so that
the data processed by the bulk read does not end up displacing most of the
cached contents. A per-iterator option can be used to achieve this:

```c++
leveldb::ReadOptions options;
options.fill_cache = false;
leveldb::Iterator* it = db->NewIterator(options);
for (it->SeekToFirst(); it->Valid(); it->Next()) {
  ...
}
```

### Key Layout

Note that the unit of disk transfer and caching is a block. Adjacent keys
(according to the database sort order) will usually be placed in the same block.
Therefore the application can improve its performance by placing keys that are
accessed together near each other and placing infrequently used keys in a
separate region of the key space.

For example, suppose we are implementing a simple file system on top of leveldb.
The types of entries we might wish to store are:

    filename -> permission-bits, length, list of file_block_ids
    file_block_id -> data

We might want to prefix filename keys with one letter (say '/') and the
`file_block_id` keys with a different letter (say '0') so that scans over just
the metadata do not force us to fetch and cache bulky file contents.

### Filters

Because of the way leveldb data is organized on disk, a single `Get()` call may
involve multiple reads from disk. The optional FilterPolicy mechanism can be
used to reduce the number of disk reads substantially.

```c++
leveldb::Options options;
options.filter_policy = NewBloomFilterPolicy(10);
leveldb::DB* db;
leveldb::DB::Open(options, "/tmp/testdb", &db);
... use the database ...
delete db;
delete options.filter_policy;
```

The preceding code associates a Bloom filter based filtering policy with the
database.  Bloom filter based filtering relies on keeping some number of bits of
data in memory per key (in this case 10 bits per key since that is the argument
we passed to `NewBloomFilterPolicy`). This filter will reduce the number of
unnecessary disk reads needed for Get() calls by a factor of approximately
a 100. Increasing the bits per key will lead to a larger reduction at the cost
of more memory usage. We recommend that applications whose working set does not
fit in memory and that do a lot of random reads set a filter policy.

If you are using a custom comparator, you should ensure that the filter policy
you are using is compatible with your comparator. For example, consider a
comparator that ignores trailing spaces when comparing keys.
`NewBloomFilterPolicy` must not be used with such a comparator. Instead, the
application should provide a custom filter policy that also ignores trailing
spaces. For example:

```c++
class CustomFilterPolicy : public leveldb::FilterPolicy {
 private:
  FilterPolicy* builtin_policy_;

 public:
  CustomFilterPolicy() : builtin_policy_(NewBloomFilterPolicy(10)) {}
  ~CustomFilterPolicy() { delete builtin_policy_; }

  const char* Name() const { return "IgnoreTrailingSpacesFilter"; }

  void CreateFilter(const Slice* keys, int n, std::string* dst) const {
    // Use builtin bloom filter code after removing trailing spaces
    std::vector<Slice> trimmed(n);
    for (int i = 0; i < n; i++) {
      trimmed[i] = RemoveTrailingSpaces(keys[i]);
    }
    return builtin_policy_->CreateFilter(&trimmed[i], n, dst);
  }
};
```

Advanced applications may provide a filter policy that does not use a bloom
filter but uses some other mechanism for summarizing a set of keys. See
`leveldb/filter_policy.h` for detail.

## Checksums

leveldb associates checksums with all data it stores in the file system. There
are two separate controls provided over how aggressively these checksums are
verified:

`ReadOptions::verify_checksums` may be set to true to force checksum
verification of all data that is read from the file system on behalf of a
particular read.  By default, no such verification is done.

`Options::paranoid_checks` may be set to true before opening a database to make
the database implementation raise an error as soon as it detects an internal
corruption. Depending on which portion of the database has been corrupted, the
error may be raised when the database is opened, or later by another database
operation. By default, paranoid checking is off so that the database can be used
even if parts of its persistent storage have been corrupted.

If a database is corrupted (perhaps it cannot be opened when paranoid checking
is turned on), the `leveldb::RepairDB` function may be used to recover as much
of the data as possible

## Approximate Sizes

The `GetApproximateSizes` method can used to get the approximate number of bytes
of file system space used by one or more key ranges.

```c++
leveldb::Range ranges[2];
ranges[0] = leveldb::Range("a", "c");
ranges[1] = leveldb::Range("x", "z");
uint64_t sizes[2];
leveldb::Status s = db->GetApproximateSizes(ranges, 2, sizes);
```

The preceding call will set `sizes[0]` to the approximate number of bytes of
file system space used by the key range `[a..c)` and `sizes[1]` to the
approximate number of bytes used by the key range `[x..z)`.

## Environment

All file operations (and other operating system calls) issued by the leveldb
implementation are routed through a `leveldb::Env` object. Sophisticated clients
may wish to provide their own Env implementation to get better control.
For example, an application may introduce artificial delays in the file IO
paths to limit the impact of leveldb on other activities in the system.

```c++
class SlowEnv : public leveldb::Env {
  ... implementation of the Env interface ...
};

SlowEnv env;
leveldb::Options options;
options.env = &env;
Status s = leveldb::DB::Open(options, ...);
```

## Porting

leveldb may be ported to a new platform by providing platform specific
implementations of the types/methods/functions exported by
`leveldb/port/port.h`.  See `leveldb/port/port_example.h` for more details.

In addition, the new platform may need a new default `leveldb::Env`
implementation.  See `leveldb/util/env_posix.h` for an example.

## Other Information

Details about the leveldb implementation may be found in the following
documents:

1. [Implementation notes](impl.md)
2. [Format of an immutable Table file](table_format.md)
3. [Format of a log file](log_format.md)