aboutsummaryrefslogtreecommitdiff
path: root/src/hash.h
blob: 474b13d65b50b444d89a5b9beafb71f39870ac6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#ifndef BITCOIN_HASH_H
#define BITCOIN_HASH_H

#include "crypto/ripemd160.h"
#include "crypto/sha256.h"
#include "prevector.h"
#include "serialize.h"
#include "uint256.h"
#include "version.h"

#include <vector>

typedef uint256 ChainCode;

/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
class CHash256 {
private:
    CSHA256 sha;
public:
    static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;

    void Finalize(unsigned char hash[OUTPUT_SIZE]) {
        unsigned char buf[CSHA256::OUTPUT_SIZE];
        sha.Finalize(buf);
        sha.Reset().Write(buf, CSHA256::OUTPUT_SIZE).Finalize(hash);
    }

    CHash256& Write(const unsigned char *data, size_t len) {
        sha.Write(data, len);
        return *this;
    }

    CHash256& Reset() {
        sha.Reset();
        return *this;
    }
};

/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
class CHash160 {
private:
    CSHA256 sha;
public:
    static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;

    void Finalize(unsigned char hash[OUTPUT_SIZE]) {
        unsigned char buf[CSHA256::OUTPUT_SIZE];
        sha.Finalize(buf);
        CRIPEMD160().Write(buf, CSHA256::OUTPUT_SIZE).Finalize(hash);
    }

    CHash160& Write(const unsigned char *data, size_t len) {
        sha.Write(data, len);
        return *this;
    }

    CHash160& Reset() {
        sha.Reset();
        return *this;
    }
};

/** Compute the 256-bit hash of an object. */
template<typename T1>
inline uint256 Hash(const T1 pbegin, const T1 pend)
{
    static const unsigned char pblank[1] = {};
    uint256 result;
    CHash256().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
              .Finalize((unsigned char*)&result);
    return result;
}

/** Compute the 256-bit hash of the concatenation of two objects. */
template<typename T1, typename T2>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
                    const T2 p2begin, const T2 p2end) {
    static const unsigned char pblank[1] = {};
    uint256 result;
    CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
              .Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
              .Finalize((unsigned char*)&result);
    return result;
}

/** Compute the 160-bit hash an object. */
template<typename T1>
inline uint160 Hash160(const T1 pbegin, const T1 pend)
{
    static unsigned char pblank[1] = {};
    uint160 result;
    CHash160().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
              .Finalize((unsigned char*)&result);
    return result;
}

/** Compute the 160-bit hash of a vector. */
inline uint160 Hash160(const std::vector<unsigned char>& vch)
{
    return Hash160(vch.begin(), vch.end());
}

/** Compute the 160-bit hash of a vector. */
template<unsigned int N>
inline uint160 Hash160(const prevector<N, unsigned char>& vch)
{
    return Hash160(vch.begin(), vch.end());
}

/** A writer stream (for serialization) that computes a 256-bit hash. */
class CHashWriter
{
private:
    CHash256 ctx;

    const int nType;
    const int nVersion;
public:

    CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {}

    int GetType() const { return nType; }
    int GetVersion() const { return nVersion; }

    void write(const char *pch, size_t size) {
        ctx.Write((const unsigned char*)pch, size);
    }

    // invalidates the object
    uint256 GetHash() {
        uint256 result;
        ctx.Finalize((unsigned char*)&result);
        return result;
    }

    template<typename T>
    CHashWriter& operator<<(const T& obj) {
        // Serialize to this stream
        ::Serialize(*this, obj);
        return (*this);
    }
};

/** Reads data from an underlying stream, while hashing the read data. */
template<typename Source>
class CHashVerifier : public CHashWriter
{
private:
    Source* source;

public:
    explicit CHashVerifier(Source* source_) : CHashWriter(source_->GetType(), source_->GetVersion()), source(source_) {}

    void read(char* pch, size_t nSize)
    {
        source->read(pch, nSize);
        this->write(pch, nSize);
    }

    void ignore(size_t nSize)
    {
        char data[1024];
        while (nSize > 0) {
            size_t now = std::min<size_t>(nSize, 1024);
            read(data, now);
            nSize -= now;
        }
    }

    template<typename T>
    CHashVerifier<Source>& operator>>(T& obj)
    {
        // Unserialize from this stream
        ::Unserialize(*this, obj);
        return (*this);
    }
};

/** Compute the 256-bit hash of an object's serialization. */
template<typename T>
uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL_VERSION)
{
    CHashWriter ss(nType, nVersion);
    ss << obj;
    return ss.GetHash();
}

unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash);

void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]);

/** SipHash-2-4 */
class CSipHasher
{
private:
    uint64_t v[4];
    uint64_t tmp;
    int count;

public:
    /** Construct a SipHash calculator initialized with 128-bit key (k0, k1) */
    CSipHasher(uint64_t k0, uint64_t k1);
    /** Hash a 64-bit integer worth of data
     *  It is treated as if this was the little-endian interpretation of 8 bytes.
     *  This function can only be used when a multiple of 8 bytes have been written so far.
     */
    CSipHasher& Write(uint64_t data);
    /** Hash arbitrary bytes. */
    CSipHasher& Write(const unsigned char* data, size_t size);
    /** Compute the 64-bit SipHash-2-4 of the data written so far. The object remains untouched. */
    uint64_t Finalize() const;
};

/** Optimized SipHash-2-4 implementation for uint256.
 *
 *  It is identical to:
 *    SipHasher(k0, k1)
 *      .Write(val.GetUint64(0))
 *      .Write(val.GetUint64(1))
 *      .Write(val.GetUint64(2))
 *      .Write(val.GetUint64(3))
 *      .Finalize()
 */
uint64_t SipHashUint256(uint64_t k0, uint64_t k1, const uint256& val);
uint64_t SipHashUint256Extra(uint64_t k0, uint64_t k1, const uint256& val, uint32_t extra);

#endif // BITCOIN_HASH_H