1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
/* optimal for 128-bit and 256-bit exponents. */
#define WINDOW_A 5
/** larger numbers may result in slightly better performance, at the cost of
exponentially larger precomputed tables. */
#ifdef USE_ENDOMORPHISM
/** Two tables for window size 15: 1.375 MiB. */
#define WINDOW_G 15
#else
/** One table for window size 16: 1.375 MiB. */
#define WINDOW_G 16
#endif
/** Fill a table 'pre' with precomputed odd multiples of a. W determines the size of the table.
* pre will contains the values [1*a,3*a,5*a,...,(2^(w-1)-1)*a], so it needs place for
* 2^(w-2) entries.
*
* There are two versions of this function:
* - secp256k1_ecmult_precomp_wnaf_gej, which operates on group elements in jacobian notation,
* fast to precompute, but slower to use in later additions.
* - secp256k1_ecmult_precomp_wnaf_ge, which operates on group elements in affine notations,
* (much) slower to precompute, but a bit faster to use in later additions.
* To compute a*P + b*G, we use the jacobian version for P, and the affine version for G, as
* G is constant, so it only needs to be done once in advance.
*/
static void secp256k1_ecmult_table_precomp_gej_var(secp256k1_gej_t *pre, const secp256k1_gej_t *a, int w) {
pre[0] = *a;
secp256k1_gej_t d; secp256k1_gej_double_var(&d, &pre[0]);
for (int i=1; i<(1 << (w-2)); i++)
secp256k1_gej_add_var(&pre[i], &d, &pre[i-1]);
}
static void secp256k1_ecmult_table_precomp_ge_var(secp256k1_ge_t *pre, const secp256k1_gej_t *a, int w) {
const int table_size = 1 << (w-2);
secp256k1_gej_t *prej = checked_malloc(sizeof(secp256k1_gej_t) * table_size);
prej[0] = *a;
secp256k1_gej_t d; secp256k1_gej_double_var(&d, a);
for (int i=1; i<table_size; i++) {
secp256k1_gej_add_var(&prej[i], &d, &prej[i-1]);
}
secp256k1_ge_set_all_gej_var(table_size, pre, prej);
free(prej);
}
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
/** The following two macro retrieves a particular odd multiple from a table
* of precomputed multiples. */
#define ECMULT_TABLE_GET(r,pre,n,w,neg) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) \
*(r) = (pre)[((n)-1)/2]; \
else \
(neg)((r), &(pre)[(-(n)-1)/2]); \
} while(0)
#define ECMULT_TABLE_GET_GEJ(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_gej_neg)
#define ECMULT_TABLE_GET_GE(r,pre,n,w) ECMULT_TABLE_GET((r),(pre),(n),(w),secp256k1_ge_neg)
typedef struct {
/* For accelerating the computation of a*P + b*G: */
secp256k1_ge_t pre_g[ECMULT_TABLE_SIZE(WINDOW_G)]; /* odd multiples of the generator */
#ifdef USE_ENDOMORPHISM
secp256k1_ge_t pre_g_128[ECMULT_TABLE_SIZE(WINDOW_G)]; /* odd multiples of 2^128*generator */
#endif
} secp256k1_ecmult_consts_t;
static const secp256k1_ecmult_consts_t *secp256k1_ecmult_consts = NULL;
static void secp256k1_ecmult_start(void) {
if (secp256k1_ecmult_consts != NULL)
return;
/* Allocate the precomputation table. */
secp256k1_ecmult_consts_t *ret = (secp256k1_ecmult_consts_t*)checked_malloc(sizeof(secp256k1_ecmult_consts_t));
/* get the generator */
const secp256k1_ge_t *g = &secp256k1_ge_consts->g;
secp256k1_gej_t gj; secp256k1_gej_set_ge(&gj, g);
#ifdef USE_ENDOMORPHISM
/* calculate 2^128*generator */
secp256k1_gej_t g_128j = gj;
for (int i=0; i<128; i++)
secp256k1_gej_double_var(&g_128j, &g_128j);
#endif
/* precompute the tables with odd multiples */
secp256k1_ecmult_table_precomp_ge_var(ret->pre_g, &gj, WINDOW_G);
#ifdef USE_ENDOMORPHISM
secp256k1_ecmult_table_precomp_ge_var(ret->pre_g_128, &g_128j, WINDOW_G);
#endif
/* Set the global pointer to the precomputation table. */
secp256k1_ecmult_consts = ret;
}
static void secp256k1_ecmult_stop(void) {
if (secp256k1_ecmult_consts == NULL)
return;
secp256k1_ecmult_consts_t *c = (secp256k1_ecmult_consts_t*)secp256k1_ecmult_consts;
secp256k1_ecmult_consts = NULL;
free(c);
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more
* - than the number of bits in the (absolute value) of the input.
*/
static int secp256k1_ecmult_wnaf(int *wnaf, const secp256k1_scalar_t *a, int w) {
secp256k1_scalar_t s = *a;
int sign = 1;
if (secp256k1_scalar_get_bits(&s, 255, 1)) {
secp256k1_scalar_negate(&s, &s);
sign = -1;
}
int set_bits = 0;
int bit = 0;
while (bit < 256) {
if (secp256k1_scalar_get_bits(&s, bit, 1) == 0) {
bit++;
continue;
}
while (set_bits < bit) {
wnaf[set_bits++] = 0;
}
int now = w;
if (bit + now > 256) {
now = 256 - bit;
}
int word = secp256k1_scalar_get_bits_var(&s, bit, now);
if (word & (1 << (w-1))) {
secp256k1_scalar_add_bit(&s, bit + w);
wnaf[set_bits++] = sign * (word - (1 << w));
} else {
wnaf[set_bits++] = sign * word;
}
bit += now;
}
return set_bits;
}
static void secp256k1_ecmult(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_scalar_t *na, const secp256k1_scalar_t *ng) {
const secp256k1_ecmult_consts_t *c = secp256k1_ecmult_consts;
#ifdef USE_ENDOMORPHISM
secp256k1_scalar_t na_1, na_lam;
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
secp256k1_scalar_split_lambda_var(&na_1, &na_lam, na);
/* build wnaf representation for na_1 and na_lam. */
int wnaf_na_1[130]; int bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, &na_1, WINDOW_A);
int wnaf_na_lam[130]; int bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, &na_lam, WINDOW_A);
VERIFY_CHECK(bits_na_1 <= 130);
VERIFY_CHECK(bits_na_lam <= 130);
int bits = bits_na_1;
if (bits_na_lam > bits) bits = bits_na_lam;
#else
/* build wnaf representation for na. */
int wnaf_na[256]; int bits_na = secp256k1_ecmult_wnaf(wnaf_na, na, WINDOW_A);
int bits = bits_na;
#endif
/* calculate odd multiples of a */
secp256k1_gej_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ecmult_table_precomp_gej_var(pre_a, a, WINDOW_A);
#ifdef USE_ENDOMORPHISM
secp256k1_gej_t pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
for (int i=0; i<ECMULT_TABLE_SIZE(WINDOW_A); i++)
secp256k1_gej_mul_lambda(&pre_a_lam[i], &pre_a[i]);
/* Splitted G factors. */
secp256k1_scalar_t ng_1, ng_128;
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
/* Build wnaf representation for ng_1 and ng_128 */
int wnaf_ng_1[129]; int bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, &ng_1, WINDOW_G);
int wnaf_ng_128[129]; int bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) bits = bits_ng_1;
if (bits_ng_128 > bits) bits = bits_ng_128;
#else
int wnaf_ng[257]; int bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, ng, WINDOW_G);
if (bits_ng > bits) bits = bits_ng;
#endif
secp256k1_gej_set_infinity(r);
secp256k1_gej_t tmpj;
secp256k1_ge_t tmpa;
for (int i=bits-1; i>=0; i--) {
secp256k1_gej_double_var(r, r);
int n;
#ifdef USE_ENDOMORPHISM
if (i < bits_na_1 && (n = wnaf_na_1[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A);
secp256k1_gej_add_var(r, r, &tmpj);
}
if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a_lam, n, WINDOW_A);
secp256k1_gej_add_var(r, r, &tmpj);
}
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g, n, WINDOW_G);
secp256k1_gej_add_ge_var(r, r, &tmpa);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g_128, n, WINDOW_G);
secp256k1_gej_add_ge_var(r, r, &tmpa);
}
#else
if (i < bits_na && (n = wnaf_na[i])) {
ECMULT_TABLE_GET_GEJ(&tmpj, pre_a, n, WINDOW_A);
secp256k1_gej_add_var(r, r, &tmpj);
}
if (i < bits_ng && (n = wnaf_ng[i])) {
ECMULT_TABLE_GET_GE(&tmpa, c->pre_g, n, WINDOW_G);
secp256k1_gej_add_ge_var(r, r, &tmpa);
}
#endif
}
}
#endif
|