1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
// Copyright (c) 2012-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_DBWRAPPER_H
#define BITCOIN_DBWRAPPER_H
#include <attributes.h>
#include <serialize.h>
#include <span.h>
#include <streams.h>
#include <util/check.h>
#include <util/fs.h>
#include <cstddef>
#include <exception>
#include <memory>
#include <optional>
#include <stdexcept>
#include <string>
#include <vector>
static const size_t DBWRAPPER_PREALLOC_KEY_SIZE = 64;
static const size_t DBWRAPPER_PREALLOC_VALUE_SIZE = 1024;
//! User-controlled performance and debug options.
struct DBOptions {
//! Compact database on startup.
bool force_compact = false;
};
//! Application-specific storage settings.
struct DBParams {
//! Location in the filesystem where leveldb data will be stored.
fs::path path;
//! Configures various leveldb cache settings.
size_t cache_bytes;
//! If true, use leveldb's memory environment.
bool memory_only = false;
//! If true, remove all existing data.
bool wipe_data = false;
//! If true, store data obfuscated via simple XOR. If false, XOR with a
//! zero'd byte array.
bool obfuscate = false;
//! Passed-through options.
DBOptions options{};
};
class dbwrapper_error : public std::runtime_error
{
public:
explicit dbwrapper_error(const std::string& msg) : std::runtime_error(msg) {}
};
class CDBWrapper;
/** These should be considered an implementation detail of the specific database.
*/
namespace dbwrapper_private {
/** Work around circular dependency, as well as for testing in dbwrapper_tests.
* Database obfuscation should be considered an implementation detail of the
* specific database.
*/
const std::vector<unsigned char>& GetObfuscateKey(const CDBWrapper &w);
}; // namespace dbwrapper_private
bool DestroyDB(const std::string& path_str);
/** Batch of changes queued to be written to a CDBWrapper */
class CDBBatch
{
friend class CDBWrapper;
private:
const CDBWrapper &parent;
struct WriteBatchImpl;
const std::unique_ptr<WriteBatchImpl> m_impl_batch;
DataStream ssKey{};
DataStream ssValue{};
size_t size_estimate{0};
void WriteImpl(Span<const std::byte> key, DataStream& ssValue);
void EraseImpl(Span<const std::byte> key);
public:
/**
* @param[in] _parent CDBWrapper that this batch is to be submitted to
*/
explicit CDBBatch(const CDBWrapper& _parent);
~CDBBatch();
void Clear();
template <typename K, typename V>
void Write(const K& key, const V& value)
{
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssValue.reserve(DBWRAPPER_PREALLOC_VALUE_SIZE);
ssKey << key;
ssValue << value;
WriteImpl(ssKey, ssValue);
ssKey.clear();
ssValue.clear();
}
template <typename K>
void Erase(const K& key)
{
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
EraseImpl(ssKey);
ssKey.clear();
}
size_t SizeEstimate() const { return size_estimate; }
};
class CDBIterator
{
public:
struct IteratorImpl;
private:
const CDBWrapper &parent;
const std::unique_ptr<IteratorImpl> m_impl_iter;
void SeekImpl(Span<const std::byte> key);
Span<const std::byte> GetKeyImpl() const;
Span<const std::byte> GetValueImpl() const;
public:
/**
* @param[in] _parent Parent CDBWrapper instance.
* @param[in] _piter The original leveldb iterator.
*/
CDBIterator(const CDBWrapper& _parent, std::unique_ptr<IteratorImpl> _piter);
~CDBIterator();
bool Valid() const;
void SeekToFirst();
template<typename K> void Seek(const K& key) {
DataStream ssKey{};
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
SeekImpl(ssKey);
}
void Next();
template<typename K> bool GetKey(K& key) {
try {
DataStream ssKey{GetKeyImpl()};
ssKey >> key;
} catch (const std::exception&) {
return false;
}
return true;
}
template<typename V> bool GetValue(V& value) {
try {
DataStream ssValue{GetValueImpl()};
ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent));
ssValue >> value;
} catch (const std::exception&) {
return false;
}
return true;
}
};
struct LevelDBContext;
class CDBWrapper
{
friend const std::vector<unsigned char>& dbwrapper_private::GetObfuscateKey(const CDBWrapper &w);
private:
//! holds all leveldb-specific fields of this class
std::unique_ptr<LevelDBContext> m_db_context;
//! the name of this database
std::string m_name;
//! a key used for optional XOR-obfuscation of the database
std::vector<unsigned char> obfuscate_key;
//! the key under which the obfuscation key is stored
static const std::string OBFUSCATE_KEY_KEY;
//! the length of the obfuscate key in number of bytes
static const unsigned int OBFUSCATE_KEY_NUM_BYTES;
std::vector<unsigned char> CreateObfuscateKey() const;
//! path to filesystem storage
const fs::path m_path;
//! whether or not the database resides in memory
bool m_is_memory;
std::optional<std::string> ReadImpl(Span<const std::byte> key) const;
bool ExistsImpl(Span<const std::byte> key) const;
size_t EstimateSizeImpl(Span<const std::byte> key1, Span<const std::byte> key2) const;
auto& DBContext() const LIFETIMEBOUND { return *Assert(m_db_context); }
public:
CDBWrapper(const DBParams& params);
~CDBWrapper();
CDBWrapper(const CDBWrapper&) = delete;
CDBWrapper& operator=(const CDBWrapper&) = delete;
template <typename K, typename V>
bool Read(const K& key, V& value) const
{
DataStream ssKey{};
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
std::optional<std::string> strValue{ReadImpl(ssKey)};
if (!strValue) {
return false;
}
try {
DataStream ssValue{MakeByteSpan(*strValue)};
ssValue.Xor(obfuscate_key);
ssValue >> value;
} catch (const std::exception&) {
return false;
}
return true;
}
template <typename K, typename V>
bool Write(const K& key, const V& value, bool fSync = false)
{
CDBBatch batch(*this);
batch.Write(key, value);
return WriteBatch(batch, fSync);
}
//! @returns filesystem path to the on-disk data.
std::optional<fs::path> StoragePath() {
if (m_is_memory) {
return {};
}
return m_path;
}
template <typename K>
bool Exists(const K& key) const
{
DataStream ssKey{};
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
return ExistsImpl(ssKey);
}
template <typename K>
bool Erase(const K& key, bool fSync = false)
{
CDBBatch batch(*this);
batch.Erase(key);
return WriteBatch(batch, fSync);
}
bool WriteBatch(CDBBatch& batch, bool fSync = false);
// Get an estimate of LevelDB memory usage (in bytes).
size_t DynamicMemoryUsage() const;
CDBIterator* NewIterator();
/**
* Return true if the database managed by this class contains no entries.
*/
bool IsEmpty();
template<typename K>
size_t EstimateSize(const K& key_begin, const K& key_end) const
{
DataStream ssKey1{}, ssKey2{};
ssKey1.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey2.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey1 << key_begin;
ssKey2 << key_end;
return EstimateSizeImpl(ssKey1, ssKey2);
}
};
#endif // BITCOIN_DBWRAPPER_H
|