1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
// Copyright (c) 2017-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <crypto/muhash.h>
#include <crypto/chacha20.h>
#include <crypto/common.h>
#include <hash.h>
#include <cassert>
#include <cstdio>
#include <limits>
namespace {
using limb_t = Num3072::limb_t;
using double_limb_t = Num3072::double_limb_t;
constexpr int LIMB_SIZE = Num3072::LIMB_SIZE;
/** 2^3072 - 1103717, the largest 3072-bit safe prime number, is used as the modulus. */
constexpr limb_t MAX_PRIME_DIFF = 1103717;
/** Extract the lowest limb of [c0,c1,c2] into n, and left shift the number by 1 limb. */
inline void extract3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& n)
{
n = c0;
c0 = c1;
c1 = c2;
c2 = 0;
}
/** [c0,c1] = a * b */
inline void mul(limb_t& c0, limb_t& c1, const limb_t& a, const limb_t& b)
{
double_limb_t t = (double_limb_t)a * b;
c1 = t >> LIMB_SIZE;
c0 = t;
}
/* [c0,c1,c2] += n * [d0,d1,d2]. c2 is 0 initially */
inline void mulnadd3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& d0, limb_t& d1, limb_t& d2, const limb_t& n)
{
double_limb_t t = (double_limb_t)d0 * n + c0;
c0 = t;
t >>= LIMB_SIZE;
t += (double_limb_t)d1 * n + c1;
c1 = t;
t >>= LIMB_SIZE;
c2 = t + d2 * n;
}
/* [c0,c1] *= n */
inline void muln2(limb_t& c0, limb_t& c1, const limb_t& n)
{
double_limb_t t = (double_limb_t)c0 * n;
c0 = t;
t >>= LIMB_SIZE;
t += (double_limb_t)c1 * n;
c1 = t;
}
/** [c0,c1,c2] += a * b */
inline void muladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
{
double_limb_t t = (double_limb_t)a * b;
limb_t th = t >> LIMB_SIZE;
limb_t tl = t;
c0 += tl;
th += (c0 < tl) ? 1 : 0;
c1 += th;
c2 += (c1 < th) ? 1 : 0;
}
/** [c0,c1,c2] += 2 * a * b */
inline void muldbladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
{
double_limb_t t = (double_limb_t)a * b;
limb_t th = t >> LIMB_SIZE;
limb_t tl = t;
c0 += tl;
limb_t tt = th + ((c0 < tl) ? 1 : 0);
c1 += tt;
c2 += (c1 < tt) ? 1 : 0;
c0 += tl;
th += (c0 < tl) ? 1 : 0;
c1 += th;
c2 += (c1 < th) ? 1 : 0;
}
/**
* Add limb a to [c0,c1]: [c0,c1] += a. Then extract the lowest
* limb of [c0,c1] into n, and left shift the number by 1 limb.
* */
inline void addnextract2(limb_t& c0, limb_t& c1, const limb_t& a, limb_t& n)
{
limb_t c2 = 0;
// add
c0 += a;
if (c0 < a) {
c1 += 1;
// Handle case when c1 has overflown
if (c1 == 0)
c2 = 1;
}
// extract
n = c0;
c0 = c1;
c1 = c2;
}
/** in_out = in_out^(2^sq) * mul */
inline void square_n_mul(Num3072& in_out, const int sq, const Num3072& mul)
{
for (int j = 0; j < sq; ++j) in_out.Square();
in_out.Multiply(mul);
}
} // namespace
/** Indicates whether d is larger than the modulus. */
bool Num3072::IsOverflow() const
{
if (this->limbs[0] <= std::numeric_limits<limb_t>::max() - MAX_PRIME_DIFF) return false;
for (int i = 1; i < LIMBS; ++i) {
if (this->limbs[i] != std::numeric_limits<limb_t>::max()) return false;
}
return true;
}
void Num3072::FullReduce()
{
limb_t c0 = MAX_PRIME_DIFF;
limb_t c1 = 0;
for (int i = 0; i < LIMBS; ++i) {
addnextract2(c0, c1, this->limbs[i], this->limbs[i]);
}
}
Num3072 Num3072::GetInverse() const
{
// For fast exponentiation a sliding window exponentiation with repunit
// precomputation is utilized. See "Fast Point Decompression for Standard
// Elliptic Curves" (Brumley, Järvinen, 2008).
Num3072 p[12]; // p[i] = a^(2^(2^i)-1)
Num3072 out;
p[0] = *this;
for (int i = 0; i < 11; ++i) {
p[i + 1] = p[i];
for (int j = 0; j < (1 << i); ++j) p[i + 1].Square();
p[i + 1].Multiply(p[i]);
}
out = p[11];
square_n_mul(out, 512, p[9]);
square_n_mul(out, 256, p[8]);
square_n_mul(out, 128, p[7]);
square_n_mul(out, 64, p[6]);
square_n_mul(out, 32, p[5]);
square_n_mul(out, 8, p[3]);
square_n_mul(out, 2, p[1]);
square_n_mul(out, 1, p[0]);
square_n_mul(out, 5, p[2]);
square_n_mul(out, 3, p[0]);
square_n_mul(out, 2, p[0]);
square_n_mul(out, 4, p[0]);
square_n_mul(out, 4, p[1]);
square_n_mul(out, 3, p[0]);
return out;
}
void Num3072::Multiply(const Num3072& a)
{
limb_t c0 = 0, c1 = 0, c2 = 0;
Num3072 tmp;
/* Compute limbs 0..N-2 of this*a into tmp, including one reduction. */
for (int j = 0; j < LIMBS - 1; ++j) {
limb_t d0 = 0, d1 = 0, d2 = 0;
mul(d0, d1, this->limbs[1 + j], a.limbs[LIMBS + j - (1 + j)]);
for (int i = 2 + j; i < LIMBS; ++i) muladd3(d0, d1, d2, this->limbs[i], a.limbs[LIMBS + j - i]);
mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
for (int i = 0; i < j + 1; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[j - i]);
extract3(c0, c1, c2, tmp.limbs[j]);
}
/* Compute limb N-1 of a*b into tmp. */
assert(c2 == 0);
for (int i = 0; i < LIMBS; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[LIMBS - 1 - i]);
extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
/* Perform a second reduction. */
muln2(c0, c1, MAX_PRIME_DIFF);
for (int j = 0; j < LIMBS; ++j) {
addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
}
assert(c1 == 0);
assert(c0 == 0 || c0 == 1);
/* Perform up to two more reductions if the internal state has already
* overflown the MAX of Num3072 or if it is larger than the modulus or
* if both are the case.
* */
if (this->IsOverflow()) this->FullReduce();
if (c0) this->FullReduce();
}
void Num3072::Square()
{
limb_t c0 = 0, c1 = 0, c2 = 0;
Num3072 tmp;
/* Compute limbs 0..N-2 of this*this into tmp, including one reduction. */
for (int j = 0; j < LIMBS - 1; ++j) {
limb_t d0 = 0, d1 = 0, d2 = 0;
for (int i = 0; i < (LIMBS - 1 - j) / 2; ++i) muldbladd3(d0, d1, d2, this->limbs[i + j + 1], this->limbs[LIMBS - 1 - i]);
if ((j + 1) & 1) muladd3(d0, d1, d2, this->limbs[(LIMBS - 1 - j) / 2 + j + 1], this->limbs[LIMBS - 1 - (LIMBS - 1 - j) / 2]);
mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
for (int i = 0; i < (j + 1) / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[j - i]);
if ((j + 1) & 1) muladd3(c0, c1, c2, this->limbs[(j + 1) / 2], this->limbs[j - (j + 1) / 2]);
extract3(c0, c1, c2, tmp.limbs[j]);
}
assert(c2 == 0);
for (int i = 0; i < LIMBS / 2; ++i) muldbladd3(c0, c1, c2, this->limbs[i], this->limbs[LIMBS - 1 - i]);
extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
/* Perform a second reduction. */
muln2(c0, c1, MAX_PRIME_DIFF);
for (int j = 0; j < LIMBS; ++j) {
addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
}
assert(c1 == 0);
assert(c0 == 0 || c0 == 1);
/* Perform up to two more reductions if the internal state has already
* overflown the MAX of Num3072 or if it is larger than the modulus or
* if both are the case.
* */
if (this->IsOverflow()) this->FullReduce();
if (c0) this->FullReduce();
}
void Num3072::SetToOne()
{
this->limbs[0] = 1;
for (int i = 1; i < LIMBS; ++i) this->limbs[i] = 0;
}
void Num3072::Divide(const Num3072& a)
{
if (this->IsOverflow()) this->FullReduce();
Num3072 inv{};
if (a.IsOverflow()) {
Num3072 b = a;
b.FullReduce();
inv = b.GetInverse();
} else {
inv = a.GetInverse();
}
this->Multiply(inv);
if (this->IsOverflow()) this->FullReduce();
}
Num3072::Num3072(const unsigned char (&data)[BYTE_SIZE]) {
for (int i = 0; i < LIMBS; ++i) {
if (sizeof(limb_t) == 4) {
this->limbs[i] = ReadLE32(data + 4 * i);
} else if (sizeof(limb_t) == 8) {
this->limbs[i] = ReadLE64(data + 8 * i);
}
}
}
void Num3072::ToBytes(unsigned char (&out)[BYTE_SIZE]) {
for (int i = 0; i < LIMBS; ++i) {
if (sizeof(limb_t) == 4) {
WriteLE32(out + i * 4, this->limbs[i]);
} else if (sizeof(limb_t) == 8) {
WriteLE64(out + i * 8, this->limbs[i]);
}
}
}
Num3072 MuHash3072::ToNum3072(Span<const unsigned char> in) {
unsigned char tmp[Num3072::BYTE_SIZE];
uint256 hashed_in{(HashWriter{} << in).GetSHA256()};
ChaCha20Aligned(hashed_in.data()).Keystream64(tmp, Num3072::BYTE_SIZE / 64);
Num3072 out{tmp};
return out;
}
MuHash3072::MuHash3072(Span<const unsigned char> in) noexcept
{
m_numerator = ToNum3072(in);
}
void MuHash3072::Finalize(uint256& out) noexcept
{
m_numerator.Divide(m_denominator);
m_denominator.SetToOne(); // Needed to keep the MuHash object valid
unsigned char data[Num3072::BYTE_SIZE];
m_numerator.ToBytes(data);
out = (HashWriter{} << data).GetSHA256();
}
MuHash3072& MuHash3072::operator*=(const MuHash3072& mul) noexcept
{
m_numerator.Multiply(mul.m_numerator);
m_denominator.Multiply(mul.m_denominator);
return *this;
}
MuHash3072& MuHash3072::operator/=(const MuHash3072& div) noexcept
{
m_numerator.Multiply(div.m_denominator);
m_denominator.Multiply(div.m_numerator);
return *this;
}
MuHash3072& MuHash3072::Insert(Span<const unsigned char> in) noexcept {
m_numerator.Multiply(ToNum3072(in));
return *this;
}
MuHash3072& MuHash3072::Remove(Span<const unsigned char> in) noexcept {
m_denominator.Multiply(ToNum3072(in));
return *this;
}
|