aboutsummaryrefslogtreecommitdiff
path: root/src/cluster_linearize.h
blob: 52880529f6fb68cb9a5f5dfbb75881c534a4dd5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#ifndef BITCOIN_CLUSTER_LINEARIZE_H
#define BITCOIN_CLUSTER_LINEARIZE_H

#include <algorithm>
#include <numeric>
#include <optional>
#include <stdint.h>
#include <vector>
#include <utility>

#include <util/feefrac.h>
#include <util/vecdeque.h>

namespace cluster_linearize {

/** Data type to represent cluster input.
 *
 * cluster[i].first is tx_i's fee and size.
 * cluster[i].second[j] is true iff tx_i spends one or more of tx_j's outputs.
 */
template<typename SetType>
using Cluster = std::vector<std::pair<FeeFrac, SetType>>;

/** Data type to represent transaction indices in clusters. */
using ClusterIndex = uint32_t;

/** Data structure that holds a transaction graph's preprocessed data (fee, size, ancestors,
 *  descendants). */
template<typename SetType>
class DepGraph
{
    /** Information about a single transaction. */
    struct Entry
    {
        /** Fee and size of transaction itself. */
        FeeFrac feerate;
        /** All ancestors of the transaction (including itself). */
        SetType ancestors;
        /** All descendants of the transaction (including itself). */
        SetType descendants;

        /** Equality operator (primarily for for testing purposes). */
        friend bool operator==(const Entry&, const Entry&) noexcept = default;

        /** Construct an empty entry. */
        Entry() noexcept = default;
        /** Construct an entry with a given feerate, ancestor set, descendant set. */
        Entry(const FeeFrac& f, const SetType& a, const SetType& d) noexcept : feerate(f), ancestors(a), descendants(d) {}
    };

    /** Data for each transaction, in the same order as the Cluster it was constructed from. */
    std::vector<Entry> entries;

public:
    /** Equality operator (primarily for testing purposes). */
    friend bool operator==(const DepGraph&, const DepGraph&) noexcept = default;

    // Default constructors.
    DepGraph() noexcept = default;
    DepGraph(const DepGraph&) noexcept = default;
    DepGraph(DepGraph&&) noexcept = default;
    DepGraph& operator=(const DepGraph&) noexcept = default;
    DepGraph& operator=(DepGraph&&) noexcept = default;

    /** Construct a DepGraph object for ntx transactions, with no dependencies.
     *
     * Complexity: O(N) where N=ntx.
     **/
    explicit DepGraph(ClusterIndex ntx) noexcept
    {
        Assume(ntx <= SetType::Size());
        entries.resize(ntx);
        for (ClusterIndex i = 0; i < ntx; ++i) {
            entries[i].ancestors = SetType::Singleton(i);
            entries[i].descendants = SetType::Singleton(i);
        }
    }

    /** Construct a DepGraph object given a cluster.
     *
     * Complexity: O(N^2) where N=cluster.size().
     */
    explicit DepGraph(const Cluster<SetType>& cluster) noexcept : entries(cluster.size())
    {
        for (ClusterIndex i = 0; i < cluster.size(); ++i) {
            // Fill in fee and size.
            entries[i].feerate = cluster[i].first;
            // Fill in direct parents as ancestors.
            entries[i].ancestors = cluster[i].second;
            // Make sure transactions are ancestors of themselves.
            entries[i].ancestors.Set(i);
        }

        // Propagate ancestor information.
        for (ClusterIndex i = 0; i < entries.size(); ++i) {
            // At this point, entries[a].ancestors[b] is true iff b is an ancestor of a and there
            // is a path from a to b through the subgraph consisting of {a, b} union
            // {0, 1, ..., (i-1)}.
            SetType to_merge = entries[i].ancestors;
            for (ClusterIndex j = 0; j < entries.size(); ++j) {
                if (entries[j].ancestors[i]) {
                    entries[j].ancestors |= to_merge;
                }
            }
        }

        // Fill in descendant information by transposing the ancestor information.
        for (ClusterIndex i = 0; i < entries.size(); ++i) {
            for (auto j : entries[i].ancestors) {
                entries[j].descendants.Set(i);
            }
        }
    }

    /** Get the number of transactions in the graph. Complexity: O(1). */
    auto TxCount() const noexcept { return entries.size(); }
    /** Get the feerate of a given transaction i. Complexity: O(1). */
    const FeeFrac& FeeRate(ClusterIndex i) const noexcept { return entries[i].feerate; }
    /** Get the ancestors of a given transaction i. Complexity: O(1). */
    const SetType& Ancestors(ClusterIndex i) const noexcept { return entries[i].ancestors; }
    /** Get the descendants of a given transaction i. Complexity: O(1). */
    const SetType& Descendants(ClusterIndex i) const noexcept { return entries[i].descendants; }

    /** Add a new unconnected transaction to this transaction graph (at the end), and return its
     *  ClusterIndex.
     *
     * Complexity: O(1) (amortized, due to resizing of backing vector).
     */
    ClusterIndex AddTransaction(const FeeFrac& feefrac) noexcept
    {
        Assume(TxCount() < SetType::Size());
        ClusterIndex new_idx = TxCount();
        entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
        return new_idx;
    }

    /** Modify this transaction graph, adding a dependency between a specified parent and child.
     *
     * Complexity: O(N) where N=TxCount().
     **/
    void AddDependency(ClusterIndex parent, ClusterIndex child) noexcept
    {
        // Bail out if dependency is already implied.
        if (entries[child].ancestors[parent]) return;
        // To each ancestor of the parent, add as descendants the descendants of the child.
        const auto& chl_des = entries[child].descendants;
        for (auto anc_of_par : Ancestors(parent)) {
            entries[anc_of_par].descendants |= chl_des;
        }
        // To each descendant of the child, add as ancestors the ancestors of the parent.
        const auto& par_anc = entries[parent].ancestors;
        for (auto dec_of_chl : Descendants(child)) {
            entries[dec_of_chl].ancestors |= par_anc;
        }
    }

    /** Compute the aggregate feerate of a set of nodes in this graph.
     *
     * Complexity: O(N) where N=elems.Count().
     **/
    FeeFrac FeeRate(const SetType& elems) const noexcept
    {
        FeeFrac ret;
        for (auto pos : elems) ret += entries[pos].feerate;
        return ret;
    }

    /** Append the entries of select to list in a topologically valid order.
     *
     * Complexity: O(select.Count() * log(select.Count())).
     */
    void AppendTopo(std::vector<ClusterIndex>& list, const SetType& select) const noexcept
    {
        ClusterIndex old_len = list.size();
        for (auto i : select) list.push_back(i);
        std::sort(list.begin() + old_len, list.end(), [&](ClusterIndex a, ClusterIndex b) noexcept {
            const auto a_anc_count = entries[a].ancestors.Count();
            const auto b_anc_count = entries[b].ancestors.Count();
            if (a_anc_count != b_anc_count) return a_anc_count < b_anc_count;
            return a < b;
        });
    }
};

/** A set of transactions together with their aggregate feerate. */
template<typename SetType>
struct SetInfo
{
    /** The transactions in the set. */
    SetType transactions;
    /** Their combined fee and size. */
    FeeFrac feerate;

    /** Construct a SetInfo for the empty set. */
    SetInfo() noexcept = default;

    /** Construct a SetInfo for a specified set and feerate. */
    SetInfo(const SetType& txn, const FeeFrac& fr) noexcept : transactions(txn), feerate(fr) {}

    /** Construct a SetInfo for a given transaction in a depgraph. */
    explicit SetInfo(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept :
        transactions(SetType::Singleton(pos)), feerate(depgraph.FeeRate(pos)) {}

    /** Construct a SetInfo for a set of transactions in a depgraph. */
    explicit SetInfo(const DepGraph<SetType>& depgraph, const SetType& txn) noexcept :
        transactions(txn), feerate(depgraph.FeeRate(txn)) {}

    /** Add the transactions of other to this SetInfo (no overlap allowed). */
    SetInfo& operator|=(const SetInfo& other) noexcept
    {
        Assume(!transactions.Overlaps(other.transactions));
        transactions |= other.transactions;
        feerate += other.feerate;
        return *this;
    }

    /** Construct a new SetInfo equal to this, with more transactions added (which may overlap
     *  with the existing transactions in the SetInfo). */
    [[nodiscard]] SetInfo Add(const DepGraph<SetType>& depgraph, const SetType& txn) const noexcept
    {
        return {transactions | txn, feerate + depgraph.FeeRate(txn - transactions)};
    }

    /** Permit equality testing. */
    friend bool operator==(const SetInfo&, const SetInfo&) noexcept = default;
};

/** Compute the feerates of the chunks of linearization. */
template<typename SetType>
std::vector<FeeFrac> ChunkLinearization(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> linearization) noexcept
{
    std::vector<FeeFrac> ret;
    for (ClusterIndex i : linearization) {
        /** The new chunk to be added, initially a singleton. */
        auto new_chunk = depgraph.FeeRate(i);
        // As long as the new chunk has a higher feerate than the last chunk so far, absorb it.
        while (!ret.empty() && new_chunk >> ret.back()) {
            new_chunk += ret.back();
            ret.pop_back();
        }
        // Actually move that new chunk into the chunking.
        ret.push_back(std::move(new_chunk));
    }
    return ret;
}

/** Class encapsulating the state needed to find the best remaining ancestor set.
 *
 * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
 * MarkDone.
 *
 * As long as any part of the graph remains, FindCandidateSet() can be called which will return a
 * SetInfo with the highest-feerate ancestor set that remains (an ancestor set is a single
 * transaction together with all its remaining ancestors).
 */
template<typename SetType>
class AncestorCandidateFinder
{
    /** Internal dependency graph. */
    const DepGraph<SetType>& m_depgraph;
    /** Which transaction are left to include. */
    SetType m_todo;
    /** Precomputed ancestor-set feerates (only kept up-to-date for indices in m_todo). */
    std::vector<FeeFrac> m_ancestor_set_feerates;

public:
    /** Construct an AncestorCandidateFinder for a given cluster.
     *
     * Complexity: O(N^2) where N=depgraph.TxCount().
     */
    AncestorCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
        m_depgraph(depgraph),
        m_todo{SetType::Fill(depgraph.TxCount())},
        m_ancestor_set_feerates(depgraph.TxCount())
    {
        // Precompute ancestor-set feerates.
        for (ClusterIndex i = 0; i < depgraph.TxCount(); ++i) {
            /** The remaining ancestors for transaction i. */
            SetType anc_to_add = m_depgraph.Ancestors(i);
            FeeFrac anc_feerate;
            // Reuse accumulated feerate from first ancestor, if usable.
            Assume(anc_to_add.Any());
            ClusterIndex first = anc_to_add.First();
            if (first < i) {
                anc_feerate = m_ancestor_set_feerates[first];
                Assume(!anc_feerate.IsEmpty());
                anc_to_add -= m_depgraph.Ancestors(first);
            }
            // Add in other ancestors (which necessarily include i itself).
            Assume(anc_to_add[i]);
            anc_feerate += m_depgraph.FeeRate(anc_to_add);
            // Store the result.
            m_ancestor_set_feerates[i] = anc_feerate;
        }
    }

    /** Remove a set of transactions from the set of to-be-linearized ones.
     *
     * The same transaction may not be MarkDone()'d twice.
     *
     * Complexity: O(N*M) where N=depgraph.TxCount(), M=select.Count().
     */
    void MarkDone(SetType select) noexcept
    {
        Assume(select.Any());
        Assume(select.IsSubsetOf(m_todo));
        m_todo -= select;
        for (auto i : select) {
            auto feerate = m_depgraph.FeeRate(i);
            for (auto j : m_depgraph.Descendants(i) & m_todo) {
                m_ancestor_set_feerates[j] -= feerate;
            }
        }
    }

    /** Check whether any unlinearized transactions remain. */
    bool AllDone() const noexcept
    {
        return m_todo.None();
    }

    /** Find the best (highest-feerate, smallest among those in case of a tie) ancestor set
     *  among the remaining transactions. Requires !AllDone().
     *
     * Complexity: O(N) where N=depgraph.TxCount();
     */
    SetInfo<SetType> FindCandidateSet() const noexcept
    {
        Assume(!AllDone());
        std::optional<ClusterIndex> best;
        for (auto i : m_todo) {
            if (best.has_value()) {
                Assume(!m_ancestor_set_feerates[i].IsEmpty());
                if (!(m_ancestor_set_feerates[i] > m_ancestor_set_feerates[*best])) continue;
            }
            best = i;
        }
        Assume(best.has_value());
        return {m_depgraph.Ancestors(*best) & m_todo, m_ancestor_set_feerates[*best]};
    }
};

/** Class encapsulating the state needed to perform search for good candidate sets.
 *
 * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
 * MarkDone().
 *
 * As long as any part of the graph remains, FindCandidateSet() can be called to perform a search
 * over the set of topologically-valid subsets of that remainder, with a limit on how many
 * combinations are tried.
 */
template<typename SetType>
class SearchCandidateFinder
{
    /** Internal dependency graph for the cluster. */
    const DepGraph<SetType>& m_depgraph;
    /** Which transactions are left to do (sorted indices). */
    SetType m_todo;

public:
    /** Construct a candidate finder for a graph.
     *
     * @param[in] depgraph   Dependency graph for the to-be-linearized cluster.
     *
     * Complexity: O(1).
     */
    SearchCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
        m_depgraph(depgraph),
        m_todo(SetType::Fill(depgraph.TxCount())) {}

    /** Check whether any unlinearized transactions remain. */
    bool AllDone() const noexcept
    {
        return m_todo.None();
    }

    /** Find a high-feerate topologically-valid subset of what remains of the cluster.
     *  Requires !AllDone().
     *
     * @param[in] max_iterations  The maximum number of optimization steps that will be performed.
     * @param[in] best            A set/feerate pair with an already-known good candidate. This may
     *                            be empty.
     * @return                    A pair of:
     *                            - The best (highest feerate, smallest size as tiebreaker)
     *                              topologically valid subset (and its feerate) that was
     *                              encountered during search. It will be at least as good as the
     *                              best passed in (if not empty).
     *                            - The number of optimization steps that were performed. This will
     *                              be <= max_iterations. If strictly < max_iterations, the
     *                              returned subset is optimal.
     *
     * Complexity: O(N * min(max_iterations, 2^N)) where N=depgraph.TxCount().
     */
    std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept
    {
        Assume(!AllDone());

        /** Type for work queue items. */
        struct WorkItem
        {
            /** Set of transactions definitely included (and its feerate). This must be a subset
             *  of m_todo, and be topologically valid (includes all in-m_todo ancestors of
             *  itself). */
            SetInfo<SetType> inc;
            /** Set of undecided transactions. This must be a subset of m_todo, and have no overlap
             *  with inc. The set (inc | und) must be topologically valid. */
            SetType und;

            /** Construct a new work item. */
            WorkItem(SetInfo<SetType>&& i, SetType&& u) noexcept :
                inc(std::move(i)), und(std::move(u)) {}
        };

        /** The queue of work items. */
        VecDeque<WorkItem> queue;
        queue.reserve(std::max<size_t>(256, 2 * m_todo.Count()));

        // Create an initial entry with m_todo as undecided. Also use it as best if not provided,
        // so that during the work processing loop below, and during the add_fn/split_fn calls, we
        // do not need to deal with the best=empty case.
        if (best.feerate.IsEmpty()) best = SetInfo(m_depgraph, m_todo);
        queue.emplace_back(SetInfo<SetType>{}, SetType{m_todo});

        /** Local copy of the iteration limit. */
        uint64_t iterations_left = max_iterations;

        /** Internal function to add an item to the queue of elements to explore if there are any
         *  transactions left to split on, and to update best.
         *
         * - inc: the "inc" value for the new work item (must be topological).
         * - und: the "und" value for the new work item ((inc | und) must be topological).
         */
        auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept {
            if (!inc.feerate.IsEmpty()) {
                // If inc's feerate is better than best's, remember it as our new best.
                if (inc.feerate > best.feerate) {
                    best = inc;
                }
            } else {
                Assume(inc.transactions.None());
            }

            // Make sure there are undecided transactions left to split on.
            if (und.None()) return;

            // Actually construct a new work item on the queue. Due to the switch to DFS when queue
            // space runs out (see below), we know that no reallocation of the queue should ever
            // occur.
            Assume(queue.size() < queue.capacity());
            queue.emplace_back(std::move(inc), std::move(und));
        };

        /** Internal process function. It takes an existing work item, and splits it in two: one
         *  with a particular transaction (and its ancestors) included, and one with that
         *  transaction (and its descendants) excluded. */
        auto split_fn = [&](WorkItem&& elem) noexcept {
            // Any queue element must have undecided transactions left, otherwise there is nothing
            // to explore anymore.
            Assume(elem.und.Any());
            // The included and undecided set are all subsets of m_todo.
            Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo));
            // Included transactions cannot be undecided.
            Assume(!elem.inc.transactions.Overlaps(elem.und));

            // Pick the first undecided transaction as the one to split on.
            const ClusterIndex split = elem.und.First();

            // Add a work item corresponding to exclusion of the split transaction.
            const auto& desc = m_depgraph.Descendants(split);
            add_fn(/*inc=*/elem.inc,
                   /*und=*/elem.und - desc);

            // Add a work item corresponding to inclusion of the split transaction.
            const auto anc = m_depgraph.Ancestors(split) & m_todo;
            add_fn(/*inc=*/elem.inc.Add(m_depgraph, anc),
                   /*und=*/elem.und - anc);

            // Account for the performed split.
            --iterations_left;
        };

        // Work processing loop.
        //
        // New work items are always added at the back of the queue, but items to process use a
        // hybrid approach where they can be taken from the front or the back.
        //
        // Depth-first search (DFS) corresponds to always taking from the back of the queue. This
        // is very memory-efficient (linear in the number of transactions). Breadth-first search
        // (BFS) corresponds to always taking from the front, which potentially uses more memory
        // (up to exponential in the transaction count), but seems to work better in practice.
        //
        // The approach here combines the two: use BFS until the queue grows too large, at which
        // point we temporarily switch to DFS until the size shrinks again.
        while (!queue.empty()) {
            // Processing the first queue item, and then using DFS for everything it gives rise to,
            // may increase the queue size by the number of undecided elements in there, minus 1
            // for the first queue item being removed. Thus, only when that pushes the queue over
            // its capacity can we not process from the front (BFS), and should we use DFS.
            while (queue.size() - 1 + queue.front().und.Count() > queue.capacity()) {
                if (!iterations_left) break;
                auto elem = queue.back();
                queue.pop_back();
                split_fn(std::move(elem));
            }

            // Process one entry from the front of the queue (BFS exploration)
            if (!iterations_left) break;
            auto elem = queue.front();
            queue.pop_front();
            split_fn(std::move(elem));
        }

        // Return the found best set and the number of iterations performed.
        return {std::move(best), max_iterations - iterations_left};
    }

    /** Remove a subset of transactions from the cluster being linearized.
     *
     * Complexity: O(N) where N=done.Count().
     */
    void MarkDone(const SetType& done) noexcept
    {
        Assume(done.Any());
        Assume(done.IsSubsetOf(m_todo));
        m_todo -= done;
    }
};

/** Find a linearization for a cluster.
 *
 * @param[in] depgraph            Dependency graph of the cluster to be linearized.
 * @param[in] max_iterations      Upper bound on the number of optimization steps that will be done.
 * @return                        A pair of:
 *                                - The resulting linearization.
 *                                - A boolean indicating whether the result is guaranteed to be
 *                                  optimal.
 *
 * Complexity: O(N * min(max_iterations + N, 2^N)) where N=depgraph.TxCount().
 */
template<typename SetType>
std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations) noexcept
{
    if (depgraph.TxCount() == 0) return {{}, true};

    uint64_t iterations_left = max_iterations;
    std::vector<ClusterIndex> linearization;

    AncestorCandidateFinder anc_finder(depgraph);
    SearchCandidateFinder src_finder(depgraph);
    linearization.reserve(depgraph.TxCount());
    bool optimal = true;

    while (true) {
        // Initialize best as the best remaining ancestor set.
        auto best = anc_finder.FindCandidateSet();

        // Invoke bounded search to update best, with up to half of our remaining iterations as
        // limit.
        uint64_t max_iterations_now = (iterations_left + 1) / 2;
        uint64_t iterations_done_now = 0;
        std::tie(best, iterations_done_now) = src_finder.FindCandidateSet(max_iterations_now, best);
        iterations_left -= iterations_done_now;

        if (iterations_done_now == max_iterations_now) {
            optimal = false;
        }

        // Add to output in topological order.
        depgraph.AppendTopo(linearization, best.transactions);

        // Update state to reflect best is no longer to be linearized.
        anc_finder.MarkDone(best.transactions);
        if (anc_finder.AllDone()) break;
        src_finder.MarkDone(best.transactions);
    }

    return {std::move(linearization), optimal};
}

} // namespace cluster_linearize

#endif // BITCOIN_CLUSTER_LINEARIZE_H