1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
// Copyright (c) 2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <mutex>
#include <sstream>
#include <set>
#include <blockfilter.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <primitives/transaction.h>
#include <script/script.h>
#include <streams.h>
/// SerType used to serialize parameters in GCS filter encoding.
static constexpr int GCS_SER_TYPE = SER_NETWORK;
/// Protocol version used to serialize parameters in GCS filter encoding.
static constexpr int GCS_SER_VERSION = 0;
static const std::map<BlockFilterType, std::string> g_filter_types = {
{BlockFilterType::BASIC, "basic"},
};
template <typename OStream>
static void GolombRiceEncode(BitStreamWriter<OStream>& bitwriter, uint8_t P, uint64_t x)
{
// Write quotient as unary-encoded: q 1's followed by one 0.
uint64_t q = x >> P;
while (q > 0) {
int nbits = q <= 64 ? static_cast<int>(q) : 64;
bitwriter.Write(~0ULL, nbits);
q -= nbits;
}
bitwriter.Write(0, 1);
// Write the remainder in P bits. Since the remainder is just the bottom
// P bits of x, there is no need to mask first.
bitwriter.Write(x, P);
}
template <typename IStream>
static uint64_t GolombRiceDecode(BitStreamReader<IStream>& bitreader, uint8_t P)
{
// Read unary-encoded quotient: q 1's followed by one 0.
uint64_t q = 0;
while (bitreader.Read(1) == 1) {
++q;
}
uint64_t r = bitreader.Read(P);
return (q << P) + r;
}
// Map a value x that is uniformly distributed in the range [0, 2^64) to a
// value uniformly distributed in [0, n) by returning the upper 64 bits of
// x * n.
//
// See: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
static uint64_t MapIntoRange(uint64_t x, uint64_t n)
{
#ifdef __SIZEOF_INT128__
return (static_cast<unsigned __int128>(x) * static_cast<unsigned __int128>(n)) >> 64;
#else
// To perform the calculation on 64-bit numbers without losing the
// result to overflow, split the numbers into the most significant and
// least significant 32 bits and perform multiplication piece-wise.
//
// See: https://stackoverflow.com/a/26855440
uint64_t x_hi = x >> 32;
uint64_t x_lo = x & 0xFFFFFFFF;
uint64_t n_hi = n >> 32;
uint64_t n_lo = n & 0xFFFFFFFF;
uint64_t ac = x_hi * n_hi;
uint64_t ad = x_hi * n_lo;
uint64_t bc = x_lo * n_hi;
uint64_t bd = x_lo * n_lo;
uint64_t mid34 = (bd >> 32) + (bc & 0xFFFFFFFF) + (ad & 0xFFFFFFFF);
uint64_t upper64 = ac + (bc >> 32) + (ad >> 32) + (mid34 >> 32);
return upper64;
#endif
}
uint64_t GCSFilter::HashToRange(const Element& element) const
{
uint64_t hash = CSipHasher(m_params.m_siphash_k0, m_params.m_siphash_k1)
.Write(element.data(), element.size())
.Finalize();
return MapIntoRange(hash, m_F);
}
std::vector<uint64_t> GCSFilter::BuildHashedSet(const ElementSet& elements) const
{
std::vector<uint64_t> hashed_elements;
hashed_elements.reserve(elements.size());
for (const Element& element : elements) {
hashed_elements.push_back(HashToRange(element));
}
std::sort(hashed_elements.begin(), hashed_elements.end());
return hashed_elements;
}
GCSFilter::GCSFilter(const Params& params)
: m_params(params), m_N(0), m_F(0), m_encoded{0}
{}
GCSFilter::GCSFilter(const Params& params, std::vector<unsigned char> encoded_filter)
: m_params(params), m_encoded(std::move(encoded_filter))
{
VectorReader stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0);
uint64_t N = ReadCompactSize(stream);
m_N = static_cast<uint32_t>(N);
if (m_N != N) {
throw std::ios_base::failure("N must be <2^32");
}
m_F = static_cast<uint64_t>(m_N) * static_cast<uint64_t>(m_params.m_M);
// Verify that the encoded filter contains exactly N elements. If it has too much or too little
// data, a std::ios_base::failure exception will be raised.
BitStreamReader<VectorReader> bitreader(stream);
for (uint64_t i = 0; i < m_N; ++i) {
GolombRiceDecode(bitreader, m_params.m_P);
}
if (!stream.empty()) {
throw std::ios_base::failure("encoded_filter contains excess data");
}
}
GCSFilter::GCSFilter(const Params& params, const ElementSet& elements)
: m_params(params)
{
size_t N = elements.size();
m_N = static_cast<uint32_t>(N);
if (m_N != N) {
throw std::invalid_argument("N must be <2^32");
}
m_F = static_cast<uint64_t>(m_N) * static_cast<uint64_t>(m_params.m_M);
CVectorWriter stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0);
WriteCompactSize(stream, m_N);
if (elements.empty()) {
return;
}
BitStreamWriter<CVectorWriter> bitwriter(stream);
uint64_t last_value = 0;
for (uint64_t value : BuildHashedSet(elements)) {
uint64_t delta = value - last_value;
GolombRiceEncode(bitwriter, m_params.m_P, delta);
last_value = value;
}
bitwriter.Flush();
}
bool GCSFilter::MatchInternal(const uint64_t* element_hashes, size_t size) const
{
VectorReader stream(GCS_SER_TYPE, GCS_SER_VERSION, m_encoded, 0);
// Seek forward by size of N
uint64_t N = ReadCompactSize(stream);
assert(N == m_N);
BitStreamReader<VectorReader> bitreader(stream);
uint64_t value = 0;
size_t hashes_index = 0;
for (uint32_t i = 0; i < m_N; ++i) {
uint64_t delta = GolombRiceDecode(bitreader, m_params.m_P);
value += delta;
while (true) {
if (hashes_index == size) {
return false;
} else if (element_hashes[hashes_index] == value) {
return true;
} else if (element_hashes[hashes_index] > value) {
break;
}
hashes_index++;
}
}
return false;
}
bool GCSFilter::Match(const Element& element) const
{
uint64_t query = HashToRange(element);
return MatchInternal(&query, 1);
}
bool GCSFilter::MatchAny(const ElementSet& elements) const
{
const std::vector<uint64_t> queries = BuildHashedSet(elements);
return MatchInternal(queries.data(), queries.size());
}
const std::string& BlockFilterTypeName(BlockFilterType filter_type)
{
static std::string unknown_retval = "";
auto it = g_filter_types.find(filter_type);
return it != g_filter_types.end() ? it->second : unknown_retval;
}
bool BlockFilterTypeByName(const std::string& name, BlockFilterType& filter_type) {
for (const auto& entry : g_filter_types) {
if (entry.second == name) {
filter_type = entry.first;
return true;
}
}
return false;
}
const std::set<BlockFilterType>& AllBlockFilterTypes()
{
static std::set<BlockFilterType> types;
static std::once_flag flag;
std::call_once(flag, []() {
for (auto entry : g_filter_types) {
types.insert(entry.first);
}
});
return types;
}
const std::string& ListBlockFilterTypes()
{
static std::string type_list;
static std::once_flag flag;
std::call_once(flag, []() {
std::stringstream ret;
bool first = true;
for (auto entry : g_filter_types) {
if (!first) ret << ", ";
ret << entry.second;
first = false;
}
type_list = ret.str();
});
return type_list;
}
static GCSFilter::ElementSet BasicFilterElements(const CBlock& block,
const CBlockUndo& block_undo)
{
GCSFilter::ElementSet elements;
for (const CTransactionRef& tx : block.vtx) {
for (const CTxOut& txout : tx->vout) {
const CScript& script = txout.scriptPubKey;
if (script.empty() || script[0] == OP_RETURN) continue;
elements.emplace(script.begin(), script.end());
}
}
for (const CTxUndo& tx_undo : block_undo.vtxundo) {
for (const Coin& prevout : tx_undo.vprevout) {
const CScript& script = prevout.out.scriptPubKey;
if (script.empty()) continue;
elements.emplace(script.begin(), script.end());
}
}
return elements;
}
BlockFilter::BlockFilter(BlockFilterType filter_type, const uint256& block_hash,
std::vector<unsigned char> filter)
: m_filter_type(filter_type), m_block_hash(block_hash)
{
GCSFilter::Params params;
if (!BuildParams(params)) {
throw std::invalid_argument("unknown filter_type");
}
m_filter = GCSFilter(params, std::move(filter));
}
BlockFilter::BlockFilter(BlockFilterType filter_type, const CBlock& block, const CBlockUndo& block_undo)
: m_filter_type(filter_type), m_block_hash(block.GetHash())
{
GCSFilter::Params params;
if (!BuildParams(params)) {
throw std::invalid_argument("unknown filter_type");
}
m_filter = GCSFilter(params, BasicFilterElements(block, block_undo));
}
bool BlockFilter::BuildParams(GCSFilter::Params& params) const
{
switch (m_filter_type) {
case BlockFilterType::BASIC:
params.m_siphash_k0 = m_block_hash.GetUint64(0);
params.m_siphash_k1 = m_block_hash.GetUint64(1);
params.m_P = BASIC_FILTER_P;
params.m_M = BASIC_FILTER_M;
return true;
case BlockFilterType::INVALID:
return false;
}
return false;
}
uint256 BlockFilter::GetHash() const
{
const std::vector<unsigned char>& data = GetEncodedFilter();
uint256 result;
CHash256().Write(data.data(), data.size()).Finalize(result.begin());
return result;
}
uint256 BlockFilter::ComputeHeader(const uint256& prev_header) const
{
const uint256& filter_hash = GetHash();
uint256 result;
CHash256()
.Write(filter_hash.begin(), filter_hash.size())
.Write(prev_header.begin(), prev_header.size())
.Finalize(result.begin());
return result;
}
|