1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
// Copyright (c) 2016-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bench/bench.h>
#include <crypto/muhash.h>
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <crypto/sha3.h>
#include <crypto/sha512.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <random.h>
#include <uint256.h>
/* Number of bytes to hash per iteration */
static const uint64_t BUFFER_SIZE = 1000*1000;
static void RIPEMD160(benchmark::Bench& bench)
{
uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SHA1(benchmark::Bench& bench)
{
uint8_t hash[CSHA1::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA1().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SHA256(benchmark::Bench& bench)
{
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SHA3_256_1M(benchmark::Bench& bench)
{
uint8_t hash[SHA3_256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
SHA3_256().Write(in).Finalize(hash);
});
}
static void SHA256_32b(benchmark::Bench& bench)
{
std::vector<uint8_t> in(32,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
});
}
static void SHA256D64_1024(benchmark::Bench& bench)
{
std::vector<uint8_t> in(64 * 1024, 0);
bench.batch(in.size()).unit("byte").run([&] {
SHA256D64(in.data(), in.data(), 1024);
});
}
static void SHA512(benchmark::Bench& bench)
{
uint8_t hash[CSHA512::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
bench.batch(in.size()).unit("byte").run([&] {
CSHA512().Write(in.data(), in.size()).Finalize(hash);
});
}
static void SipHash_32b(benchmark::Bench& bench)
{
uint256 x;
uint64_t k1 = 0;
bench.run([&] {
*((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
});
}
static void FastRandom_32bit(benchmark::Bench& bench)
{
FastRandomContext rng(true);
bench.run([&] {
rng.rand32();
});
}
static void FastRandom_1bit(benchmark::Bench& bench)
{
FastRandomContext rng(true);
bench.run([&] {
rng.randbool();
});
}
static void MuHash(benchmark::Bench& bench)
{
MuHash3072 acc;
unsigned char key[32] = {0};
uint32_t i = 0;
bench.run([&] {
key[0] = ++i & 0xFF;
acc *= MuHash3072(key);
});
}
static void MuHashMul(benchmark::Bench& bench)
{
MuHash3072 acc;
FastRandomContext rng(true);
MuHash3072 muhash{rng.randbytes(32)};
bench.run([&] {
acc *= muhash;
});
}
static void MuHashDiv(benchmark::Bench& bench)
{
MuHash3072 acc;
FastRandomContext rng(true);
MuHash3072 muhash{rng.randbytes(32)};
bench.run([&] {
acc /= muhash;
});
}
static void MuHashPrecompute(benchmark::Bench& bench)
{
MuHash3072 acc;
FastRandomContext rng(true);
std::vector<unsigned char> key{rng.randbytes(32)};
bench.run([&] {
MuHash3072{key};
});
}
BENCHMARK(RIPEMD160);
BENCHMARK(SHA1);
BENCHMARK(SHA256);
BENCHMARK(SHA512);
BENCHMARK(SHA3_256_1M);
BENCHMARK(SHA256_32b);
BENCHMARK(SipHash_32b);
BENCHMARK(SHA256D64_1024);
BENCHMARK(FastRandom_32bit);
BENCHMARK(FastRandom_1bit);
BENCHMARK(MuHash);
BENCHMARK(MuHashMul);
BENCHMARK(MuHashDiv);
BENCHMARK(MuHashPrecompute);
|