aboutsummaryrefslogtreecommitdiff
path: root/src/bench/crypto_hash.cpp
blob: 2551ff359368693ef6d82386c5682125e7d3d344 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
// Copyright (c) 2016-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.


#include <bench/bench.h>
#include <crypto/muhash.h>
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <crypto/sha3.h>
#include <crypto/sha512.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <random.h>
#include <tinyformat.h>
#include <uint256.h>

/* Number of bytes to hash per iteration */
static const uint64_t BUFFER_SIZE = 1000*1000;

static void BenchRIPEMD160(benchmark::Bench& bench)
{
    uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
    });
}

static void SHA1(benchmark::Bench& bench)
{
    uint8_t hash[CSHA1::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA1().Write(in.data(), in.size()).Finalize(hash);
    });
}

static void SHA256_STANDARD(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
    uint8_t hash[CSHA256::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA256().Write(in.data(), in.size()).Finalize(hash);
    });
    SHA256AutoDetect();
}

static void SHA256_SSE4(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
    uint8_t hash[CSHA256::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA256().Write(in.data(), in.size()).Finalize(hash);
    });
    SHA256AutoDetect();
}

static void SHA256_AVX2(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
    uint8_t hash[CSHA256::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA256().Write(in.data(), in.size()).Finalize(hash);
    });
    SHA256AutoDetect();
}

static void SHA256_SHANI(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
    uint8_t hash[CSHA256::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA256().Write(in.data(), in.size()).Finalize(hash);
    });
    SHA256AutoDetect();
}

static void SHA3_256_1M(benchmark::Bench& bench)
{
    uint8_t hash[SHA3_256::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    bench.batch(in.size()).unit("byte").run([&] {
        SHA3_256().Write(in).Finalize(hash);
    });
}

static void SHA256_32b_STANDARD(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
    std::vector<uint8_t> in(32,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA256()
            .Write(in.data(), in.size())
            .Finalize(in.data());
    });
    SHA256AutoDetect();
}

static void SHA256_32b_SSE4(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
    std::vector<uint8_t> in(32,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA256()
            .Write(in.data(), in.size())
            .Finalize(in.data());
    });
    SHA256AutoDetect();
}

static void SHA256_32b_AVX2(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
    std::vector<uint8_t> in(32,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA256()
            .Write(in.data(), in.size())
            .Finalize(in.data());
    });
    SHA256AutoDetect();
}

static void SHA256_32b_SHANI(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
    std::vector<uint8_t> in(32,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA256()
            .Write(in.data(), in.size())
            .Finalize(in.data());
    });
    SHA256AutoDetect();
}

static void SHA256D64_1024_STANDARD(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::STANDARD)));
    std::vector<uint8_t> in(64 * 1024, 0);
    bench.batch(in.size()).unit("byte").run([&] {
        SHA256D64(in.data(), in.data(), 1024);
    });
    SHA256AutoDetect();
}

static void SHA256D64_1024_SSE4(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4)));
    std::vector<uint8_t> in(64 * 1024, 0);
    bench.batch(in.size()).unit("byte").run([&] {
        SHA256D64(in.data(), in.data(), 1024);
    });
    SHA256AutoDetect();
}

static void SHA256D64_1024_AVX2(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_AVX2)));
    std::vector<uint8_t> in(64 * 1024, 0);
    bench.batch(in.size()).unit("byte").run([&] {
        SHA256D64(in.data(), in.data(), 1024);
    });
    SHA256AutoDetect();
}

static void SHA256D64_1024_SHANI(benchmark::Bench& bench)
{
    bench.name(strprintf("%s using the '%s' SHA256 implementation", __func__, SHA256AutoDetect(sha256_implementation::USE_SSE4_AND_SHANI)));
    std::vector<uint8_t> in(64 * 1024, 0);
    bench.batch(in.size()).unit("byte").run([&] {
        SHA256D64(in.data(), in.data(), 1024);
    });
    SHA256AutoDetect();
}

static void SHA512(benchmark::Bench& bench)
{
    uint8_t hash[CSHA512::OUTPUT_SIZE];
    std::vector<uint8_t> in(BUFFER_SIZE,0);
    bench.batch(in.size()).unit("byte").run([&] {
        CSHA512().Write(in.data(), in.size()).Finalize(hash);
    });
}

static void SipHash_32b(benchmark::Bench& bench)
{
    uint256 x;
    uint64_t k1 = 0;
    bench.run([&] {
        *((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
    });
}

static void MuHash(benchmark::Bench& bench)
{
    MuHash3072 acc;
    unsigned char key[32] = {0};
    uint32_t i = 0;
    bench.run([&] {
        key[0] = ++i & 0xFF;
        acc *= MuHash3072(key);
    });
}

static void MuHashMul(benchmark::Bench& bench)
{
    MuHash3072 acc;
    FastRandomContext rng(true);
    MuHash3072 muhash{rng.randbytes(32)};

    bench.run([&] {
        acc *= muhash;
    });
}

static void MuHashDiv(benchmark::Bench& bench)
{
    MuHash3072 acc;
    FastRandomContext rng(true);
    MuHash3072 muhash{rng.randbytes(32)};

    bench.run([&] {
        acc /= muhash;
    });
}

static void MuHashPrecompute(benchmark::Bench& bench)
{
    MuHash3072 acc;
    FastRandomContext rng(true);
    std::vector<unsigned char> key{rng.randbytes(32)};

    bench.run([&] {
        MuHash3072{key};
    });
}

BENCHMARK(BenchRIPEMD160, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA1, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_STANDARD, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_SSE4, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_AVX2, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA512, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA3_256_1M, benchmark::PriorityLevel::HIGH);

BENCHMARK(SHA256_32b_STANDARD, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_SSE4, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_AVX2, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256_32b_SHANI, benchmark::PriorityLevel::HIGH);
BENCHMARK(SipHash_32b, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_STANDARD, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_SSE4, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_AVX2, benchmark::PriorityLevel::HIGH);
BENCHMARK(SHA256D64_1024_SHANI, benchmark::PriorityLevel::HIGH);

BENCHMARK(MuHash, benchmark::PriorityLevel::HIGH);
BENCHMARK(MuHashMul, benchmark::PriorityLevel::HIGH);
BENCHMARK(MuHashDiv, benchmark::PriorityLevel::HIGH);
BENCHMARK(MuHashPrecompute, benchmark::PriorityLevel::HIGH);