aboutsummaryrefslogtreecommitdiff
path: root/src/bench/cluster_linearize.cpp
blob: cf071dda2d1a58c99be89679ae045ae989b9b29c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// Copyright (c) The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <bench/bench.h>
#include <cluster_linearize.h>
#include <test/util/cluster_linearize.h>
#include <util/bitset.h>
#include <util/strencodings.h>

#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>

using namespace cluster_linearize;
using namespace util::hex_literals;

namespace {

/** Construct a linear graph. These are pessimal for AncestorCandidateFinder, as they maximize
 *  the number of ancestor set feerate updates. The best ancestor set is always the topmost
 *  remaining transaction, whose removal requires updating all remaining transactions' ancestor
 *  set feerates. */
template<typename SetType>
DepGraph<SetType> MakeLinearGraph(ClusterIndex ntx)
{
    DepGraph<SetType> depgraph;
    for (ClusterIndex i = 0; i < ntx; ++i) {
        depgraph.AddTransaction({-int32_t(i), 1});
        if (i > 0) depgraph.AddDependency(i - 1, i);
    }
    return depgraph;
}

/** Construct a wide graph (one root, with N-1 children that are otherwise unrelated, with
 *  increasing feerates). These graphs are pessimal for the LIMO step in Linearize, because
 *  rechunking is needed after every candidate (the last transaction gets picked every time).
 */
template<typename SetType>
DepGraph<SetType> MakeWideGraph(ClusterIndex ntx)
{
    DepGraph<SetType> depgraph;
    for (ClusterIndex i = 0; i < ntx; ++i) {
        depgraph.AddTransaction({int32_t(i) + 1, 1});
        if (i > 0) depgraph.AddDependency(0, i);
    }
    return depgraph;
}

// Construct a difficult graph. These need at least sqrt(2^(n-1)) iterations in the implemented
// algorithm (purely empirically determined).
template<typename SetType>
DepGraph<SetType> MakeHardGraph(ClusterIndex ntx)
{
    DepGraph<SetType> depgraph;
    for (ClusterIndex i = 0; i < ntx; ++i) {
        if (ntx & 1) {
            // Odd cluster size.
            //
            // Mermaid diagram code for the resulting cluster for 11 transactions:
            // ```mermaid
            // graph BT
            // T0["T0: 1/2"];T1["T1: 14/2"];T2["T2: 6/1"];T3["T3: 5/1"];T4["T4: 7/1"];
            // T5["T5: 5/1"];T6["T6: 7/1"];T7["T7: 5/1"];T8["T8: 7/1"];T9["T9: 5/1"];
            // T10["T10: 7/1"];
            // T1-->T0;T1-->T2;T3-->T2;T4-->T3;T4-->T5;T6-->T5;T4-->T7;T8-->T7;T4-->T9;T10-->T9;
            // ```
            if (i == 0) {
                depgraph.AddTransaction({1, 2});
            } else if (i == 1) {
                depgraph.AddTransaction({14, 2});
                depgraph.AddDependency(0, 1);
            } else if (i == 2) {
                depgraph.AddTransaction({6, 1});
                depgraph.AddDependency(2, 1);
            } else if (i == 3) {
                depgraph.AddTransaction({5, 1});
                depgraph.AddDependency(2, 3);
            } else if ((i & 1) == 0) {
                depgraph.AddTransaction({7, 1});
                depgraph.AddDependency(i - 1, i);
            } else {
                depgraph.AddTransaction({5, 1});
                depgraph.AddDependency(i, 4);
            }
        } else {
            // Even cluster size.
            //
            // Mermaid diagram code for the resulting cluster for 10 transactions:
            // ```mermaid
            // graph BT
            // T0["T0: 1"];T1["T1: 3"];T2["T2: 1"];T3["T3: 4"];T4["T4: 0"];T5["T5: 4"];T6["T6: 0"];
            // T7["T7: 4"];T8["T8: 0"];T9["T9: 4"];
            // T1-->T0;T2-->T0;T3-->T2;T3-->T4;T5-->T4;T3-->T6;T7-->T6;T3-->T8;T9-->T8;
            // ```
            if (i == 0) {
                depgraph.AddTransaction({1, 1});
            } else if (i == 1) {
                depgraph.AddTransaction({3, 1});
                depgraph.AddDependency(0, 1);
            } else if (i == 2) {
                depgraph.AddTransaction({1, 1});
                depgraph.AddDependency(0, 2);
            } else if (i & 1) {
                depgraph.AddTransaction({4, 1});
                depgraph.AddDependency(i - 1, i);
            } else {
                depgraph.AddTransaction({0, 1});
                depgraph.AddDependency(i, 3);
            }
        }
    }
    return depgraph;
}

/** Benchmark that does search-based candidate finding with a specified number of iterations.
 *
 * Its goal is measuring how much time every additional search iteration in linearization costs,
 * by running with a low and a high count, subtracting the results, and divided by the number
 * iterations difference.
 */
template<typename SetType>
void BenchLinearizeWorstCase(ClusterIndex ntx, benchmark::Bench& bench, uint64_t iter_limit)
{
    const auto depgraph = MakeHardGraph<SetType>(ntx);
    uint64_t rng_seed = 0;
    bench.run([&] {
        SearchCandidateFinder finder(depgraph, rng_seed++);
        auto [candidate, iters_performed] = finder.FindCandidateSet(iter_limit, {});
        assert(iters_performed == iter_limit);
    });
}

/** Benchmark for linearization improvement of a trivial linear graph using just ancestor sort.
 *
 * Its goal is measuring how much time linearization may take without any search iterations.
 *
 * If P is the benchmarked per-iteration count (obtained by running BenchLinearizeWorstCase for a
 * high and a low iteration count, subtracting them, and dividing by the difference in count), and
 * N is the resulting time of BenchLinearizeNoItersWorstCase*, then an invocation of Linearize with
 * max_iterations=m should take no more than roughly N+m*P time. This may however be an
 * overestimate, as the worst cases do not coincide (the ones that are worst for linearization
 * without any search happen to be ones that do not need many search iterations).
 *
 * This benchmark exercises a worst case for AncestorCandidateFinder, but for which improvement is
 * cheap.
 */
template<typename SetType>
void BenchLinearizeNoItersWorstCaseAnc(ClusterIndex ntx, benchmark::Bench& bench)
{
    const auto depgraph = MakeLinearGraph<SetType>(ntx);
    uint64_t rng_seed = 0;
    std::vector<ClusterIndex> old_lin(ntx);
    for (ClusterIndex i = 0; i < ntx; ++i) old_lin[i] = i;
    bench.run([&] {
        Linearize(depgraph, /*max_iterations=*/0, rng_seed++, old_lin);
    });
}

/** Benchmark for linearization improvement of a trivial wide graph using just ancestor sort.
 *
 * Its goal is measuring how much time improving a linearization may take without any search
 * iterations, similar to the previous function.
 *
 * This benchmark exercises a worst case for improving an existing linearization, but for which
 * AncestorCandidateFinder is cheap.
 */
template<typename SetType>
void BenchLinearizeNoItersWorstCaseLIMO(ClusterIndex ntx, benchmark::Bench& bench)
{
    const auto depgraph = MakeWideGraph<SetType>(ntx);
    uint64_t rng_seed = 0;
    std::vector<ClusterIndex> old_lin(ntx);
    for (ClusterIndex i = 0; i < ntx; ++i) old_lin[i] = i;
    bench.run([&] {
        Linearize(depgraph, /*max_iterations=*/0, rng_seed++, old_lin);
    });
}

template<typename SetType>
void BenchPostLinearizeWorstCase(ClusterIndex ntx, benchmark::Bench& bench)
{
    DepGraph<SetType> depgraph = MakeWideGraph<SetType>(ntx);
    std::vector<ClusterIndex> lin(ntx);
    bench.run([&] {
        for (ClusterIndex i = 0; i < ntx; ++i) lin[i] = i;
        PostLinearize(depgraph, lin);
    });
}

template<typename SetType>
void BenchMergeLinearizationsWorstCase(ClusterIndex ntx, benchmark::Bench& bench)
{
    DepGraph<SetType> depgraph;
    for (ClusterIndex i = 0; i < ntx; ++i) {
        depgraph.AddTransaction({i, 1});
        if (i) depgraph.AddDependency(0, i);
    }
    std::vector<ClusterIndex> lin1;
    std::vector<ClusterIndex> lin2;
    lin1.push_back(0);
    lin2.push_back(0);
    for (ClusterIndex i = 1; i < ntx; ++i) {
        lin1.push_back(i);
        lin2.push_back(ntx - i);
    }
    bench.run([&] {
        MergeLinearizations(depgraph, lin1, lin2);
    });
}

template<size_t N>
void BenchLinearizeOptimally(benchmark::Bench& bench, const std::array<uint8_t, N>& serialized)
{
    // Determine how many transactions the serialized cluster has.
    ClusterIndex num_tx{0};
    {
        SpanReader reader{serialized};
        DepGraph<BitSet<128>> depgraph;
        reader >> Using<DepGraphFormatter>(depgraph);
        num_tx = depgraph.TxCount();
        assert(num_tx < 128);
    }

    SpanReader reader{serialized};
    auto runner_fn = [&]<typename SetType>() noexcept {
        DepGraph<SetType> depgraph;
        reader >> Using<DepGraphFormatter>(depgraph);
        uint64_t rng_seed = 0;
        bench.run([&] {
            auto res = Linearize(depgraph, /*max_iterations=*/10000000, rng_seed++);
            assert(res.second);
        });
    };

    if (num_tx <= 32) {
        runner_fn.template operator()<BitSet<32>>();
    } else if (num_tx <= 64) {
        runner_fn.template operator()<BitSet<64>>();
    } else if (num_tx <= 96) {
        runner_fn.template operator()<BitSet<96>>();
    } else if (num_tx <= 128) {
        runner_fn.template operator()<BitSet<128>>();
    } else {
        assert(false);
    }
}

} // namespace

static void Linearize16TxWorstCase20Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<16>>(16, bench, 20); }
static void Linearize16TxWorstCase120Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<16>>(16, bench, 120); }
static void Linearize32TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<32>>(32, bench, 5000); }
static void Linearize32TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<32>>(32, bench, 15000); }
static void Linearize48TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<48>>(48, bench, 5000); }
static void Linearize48TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<48>>(48, bench, 15000); }
static void Linearize64TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<64>>(64, bench, 5000); }
static void Linearize64TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<64>>(64, bench, 15000); }
static void Linearize75TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<75>>(75, bench, 5000); }
static void Linearize75TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<75>>(75, bench, 15000); }
static void Linearize99TxWorstCase5000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<99>>(99, bench, 5000); }
static void Linearize99TxWorstCase15000Iters(benchmark::Bench& bench) { BenchLinearizeWorstCase<BitSet<99>>(99, bench, 15000); }

static void LinearizeNoIters16TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<16>>(16, bench); }
static void LinearizeNoIters32TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<32>>(32, bench); }
static void LinearizeNoIters48TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<48>>(48, bench); }
static void LinearizeNoIters64TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<64>>(64, bench); }
static void LinearizeNoIters75TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<75>>(75, bench); }
static void LinearizeNoIters99TxWorstCaseAnc(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseAnc<BitSet<99>>(99, bench); }

static void LinearizeNoIters16TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<16>>(16, bench); }
static void LinearizeNoIters32TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<32>>(32, bench); }
static void LinearizeNoIters48TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<48>>(48, bench); }
static void LinearizeNoIters64TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<64>>(64, bench); }
static void LinearizeNoIters75TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<75>>(75, bench); }
static void LinearizeNoIters99TxWorstCaseLIMO(benchmark::Bench& bench) { BenchLinearizeNoItersWorstCaseLIMO<BitSet<99>>(99, bench); }

static void PostLinearize16TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<16>>(16, bench); }
static void PostLinearize32TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<32>>(32, bench); }
static void PostLinearize48TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<48>>(48, bench); }
static void PostLinearize64TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<64>>(64, bench); }
static void PostLinearize75TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<75>>(75, bench); }
static void PostLinearize99TxWorstCase(benchmark::Bench& bench) { BenchPostLinearizeWorstCase<BitSet<99>>(99, bench); }

static void MergeLinearizations16TxWorstCase(benchmark::Bench& bench) { BenchMergeLinearizationsWorstCase<BitSet<16>>(16, bench); }
static void MergeLinearizations32TxWorstCase(benchmark::Bench& bench) { BenchMergeLinearizationsWorstCase<BitSet<32>>(32, bench); }
static void MergeLinearizations48TxWorstCase(benchmark::Bench& bench) { BenchMergeLinearizationsWorstCase<BitSet<48>>(48, bench); }
static void MergeLinearizations64TxWorstCase(benchmark::Bench& bench) { BenchMergeLinearizationsWorstCase<BitSet<64>>(64, bench); }
static void MergeLinearizations75TxWorstCase(benchmark::Bench& bench) { BenchMergeLinearizationsWorstCase<BitSet<75>>(75, bench); }
static void MergeLinearizations99TxWorstCase(benchmark::Bench& bench) { BenchMergeLinearizationsWorstCase<BitSet<99>>(99, bench); }

// The following example clusters were constructed by replaying historical mempool activity, and
// selecting for ones that take many iterations (after the introduction of some but not all
// linearization algorithm optimizations).

/* 2023-05-05T23:12:21Z 71, 521780, 543141,*/
static constexpr auto BENCH_EXAMPLE_00 = "801081a5360092239efc6201810982ab58029b6b98c86803800eed7804800ecb7e058f2f878778068030d43407853e81902a08962a81d176098010b6620a8010b2280b8010da3a0c9f069da9580d800db11e0e9d719ad37a0f967897ed5210990e99fc0e11812c81982012804685823e0f0a893982b6040a10804682c146110a6e80db5c120a8010819806130a8079858f0c140a8054829a120c12803483a1760c116f81843c0d11718189000e11800d81ac2c0f11800d81e50e10117181c77c1111822e87f2601012815983d17211127180f2121212811584a21e1312800e80d1781412813c83e81815126f80ef5016126f80ff6c16126f80f66017126e80fd541812800d81942a1912800e80dd781a12800d81f96c1b12805282e7581b127180fd721c1271a918230b805fc11a220d8118a15a2d036f80e5002011817684d8241e346f80e1181c37805082fc04260024800d81f8621734803382b354270b12805182ca2e162f800e80d52e0d32803dc360201b850e818c400b318c49808a5a290210805181d65823142a800d81a34e0850800e81fb3c0851886994fc0a280b00082c805482d208032e28805e83ba380059801081cd4a0159811884f770002e0015e17280e49024300a0000000000000031803dcb48014200"_hex_u8;
/* 2023-12-06T09:30:01Z 81, 141675, 647053,*/
static constexpr auto BENCH_EXAMPLE_01 = "b348f1fc4000f365818a9e2c01b44cf7ca0002b004f0b02003b33ef8ae3004b334f9e87005800d81c85e06b368fae26007b05ef2e14208be1a8093a50409b15cf5ee500a802c80a1420b802dea440c802ce50a0d802cdc320e802cd7220f802dd72210805380f74a118174f370126e96b32812127182c4701312817389d26414128035848c221512800e82bf3816126f81e4341712801082b228181280518af57418128040859a0019127182d0401a12803e858b641b127182c4421c126f82b3481d12811486b6301e12821d89e7281f126e8a8b421f127182d6642012806284c12021126e81d34822126e86a76222126e86d8102212805187b6542312800d82fc002412803d848e0e2512801082d27a26126e8589642612800e83a9602712800e83bd0028126e81ef1a29116e858d7228126f82db5e2912801083843c2a127181c93c2b126e85d0162b127181c5622c126e84f8262c12800f8392202d12800e82b66c2e126e81d0082f12803282d50430126e84f9003012805f84be6c3112846e88df0e2b12804080d44c340a8b31898808350a800ed760350b801083a1182b517182817e2a51800e82b6582951803583cb52420030806284cb6c204f7181d300204f82688ce0303e001d800e82bb200f488010808a182822a3289cd63041000a6fcd100a408a7caaa7024800002f803584e0741e27288f3386dd783b001000802683f27e004b8c44bcd0763f0000000000000000000100000e00"_hex_u8;
/* 2023-04-04T00:26:50Z 90, 99930, 529375,*/
static constexpr auto BENCH_EXAMPLE_02 = "815b80b61e00800da63001cd378da70e028010991a03800e9d3e0480109708058010991a068010973a07da738fa72408de7491831009b35b88f0080a9d4485de180b71974e0c71974e0d80108e500eb27988a75a0f719632108061a56c11801087761280108a1413807893441480538c1415a606828806168010893e1780548c40188e4b80bb2c196eab3e1718805ed60e18188051c97a19188010cf781a1871b11e1b1871c5281c1880508080581d186e80b13c1e188035cf421f18805fe0482018804caa661f198035a9001f156e80cb701d1871a2281e1871ad281f18817380a16020186f98642118805ee04821198010b6702219800ea12623196eb67024198035808b0025196fa65c26198054ba1c2719807680bf7c28198053cd782919803d80b80429198051db5a2a198040d3742b19976584bb1c28196efc1c281971b21a29198052bc762a1971a2502b196eb73c2c19976381ab0c2a18806290543409862081c3423b00336fbc70224d80109e7c1c52805ebd5c1942800eb57016468034ba423405158118da28350416927480f4743000159f6a81c9462e00188051ec5e380e00800e9e420775800d9e26007c906c82f754251d0025870480f12c14280023800d9e26027e9e1385ed08102900001a804fac7a018001719856028001800da87e0180039b1a868b60064102246e9f42018005800da87e028005850d81d600026d862381a2200e0008230015831480a5480342000524803eeb32006e873582a4700a0100351300"_hex_u8;
/* 2023-05-08T15:51:59Z 87, 76869, 505222,*/
static constexpr auto BENCH_EXAMPLE_03 = "c040b9e15a00b10eac842601805f85931802c104bae17403ae50aaa336049d76a9bf7005c55bbeab6606ae2aa9c72c07805e81992e08af7dab817a096e80a7e4520909803e92bd780a097185c76c0b096e98e7380b09850bb9953c0c09803389f6260d096f859d620e09803f88d3000f0971829c6e1009837690f6481109806285931811097181f56814076ea09b74120980408eb73213096f87853214096f86e2701509803f8c860016098a6fe6c3721709814f92a204180980628a8a441909803285df681a0980348498661b096e8290781c096e978e081c097187da1a1d097186c05c1e097185893c1f09805f8ad9002009800d84e74e21097183a67a22097182e23423097184b53a23096ea393062309840faddd46240980618eb732250980548bee6a2609807986883c2709718298402809815388b6582909805384ec742a097181b9142b096e97b5262b096e85e14e2c0980518abb5c2d09805489e75a2e09803187e3382f097180eb1c34046f87c34a2f098309a5c54430097186911831098054899c083209801083bc1033097081e02a3409805f848f0c35096e80d4343a057180c37040006f80a22438097180a0503f03816f8381444003803f80ef003f05800580a4283f066ef72845016efb91663e09923d808d8216470041803584837c46012f9247dc86684501268267a09610450222862184db68440712803585ea40440113835d97887805800b8723c7a40a4b00022f81529ae2143c0c1f80548b8f381b311980408e955c055e802589dc10037e801083b54602658010848130006700"_hex_u8;
/* 2023-05-01T19:32:10Z 35, 55747, 504128,*/
static constexpr auto BENCH_EXAMPLE_04 = "801af95c00801af72801801af95c02873e85f2180202873e85f2180202873e85f21802028018fb2802068018fb2803068018fb2804068018fb2805068018fb2806068018fb2807068018fb2808068018fb2809068018fb280a068018fb280a058018fb280b058018fb280c058018fb280d058018fb280e058018fb280f058018fb2810058018fb2811058018fb2812058018fb2813058018fb2814058018fb2815058018fb2815048018fb2816048018fb2817048018fb2818048018fb2819048018fb281a048018fb281b04810d80d9481f00000100"_hex_u8;
/* 2023-02-27T17:06:38Z 60, 55680, 502749,*/
static constexpr auto BENCH_EXAMPLE_05 = "b5108ab56600b26d89f85601b07383b01602b22683c96003b34a83d82e04b12f83b53a05b20e83c75a066e80840a06068040be0007066fb10608066fb2120906800eba320a06842b80b05a0a066eff420b067199300b068124c3140c0680618085180d066faa1c0e068010b4440f068051af541006800da1781106857881946812066eee1613068052b31014068324808d361506806180885c150671b03216066ef11017068052b63218066ef3521806803f80865419066e93441a068035a13e1b0680628085181c06806ec4481d068117e72c1e06719c721f068077c42420068159808d1821066eef0c21058010b90022056f9908230571993024058010b00a25058010b00a260580608087402705803fc10027068032b42828068051b6322906800db11e212a8324808d361933803ff400192f826381a7141a2f8032ac08152a800db54c044e8323808d3630010002018158d84000042d821cea12002807853580d462002d01891181d022002e00"_hex_u8;
/* 2023-04-20T22:25:49Z 99, 49100, 578622,*/
static constexpr auto BENCH_EXAMPLE_06 = "bf3c87c14c008010955a01b21d85e07002800d946c036e8e3404b77f86c26605b33c85f55e06bd06879852078010970a08bd4b87cf00098123a7720ab2158687680b8054d4440b0a8062fa4c0c0a71ac400d0a80628081540e0a8010a2580f0a8054b676100a8032b85c110a6e9a40120a6e809012130a817f80c31e140a8175808674150a719d46160a8172d86415098033c1481609800da4181709800ada2e1809803dc85219098034b4041a096ef5501b098052d67c1c098051d3281d09800ebc4a1e098175808c641f098061c55020098078c85021096e8081141f0b6faf1e200b8061da68210b8062f000220b800ebc20230b8035d058240b8053de32250b8050b610250b6fad32260b803dc276270b803d80a610280b6ef812290b8052b6322a0b800eb57e2b0b8052bd062c0b719e522d0b71a3762e0b8010bb1e2f0b80109a78310a80109962320a8051a60c330a6f9f3e320b6e808b24330b719e40340b8117cc50350b803d80971a360b8051b930370b6f9e0a380b719b10390b8052a6003a0b6e808c76390a7195603a0a6f935c3b0a8054a31a3c0a803ce30c3b0b803fa3003c0b800dbe2a3d0b8f3480a84244058005851a44069d1bf824400b83098f284507719c723d4f6f9c1c3449719c722f4f6eb23c304f8061c5502e528061da682b4e8118bb724e022a8054b35028476e941c1d51815be02c4f01148557808e3a4f070e8104af464e001180329d364e010d805f9f6a421b9c3387aa744c0d4d71ac400b800881748098444710338173809b780b80008054d444292c12821dc040550403078b4682b4664517003f00"_hex_u8;
/* 2023-06-05T19:56:12Z 52, 44896, 540514,*/
static constexpr auto BENCH_EXAMPLE_07 = "b317998a4000b40098d53e01b45b99814802b7289b940003b3699a9d1204b6619a807a05814682cb78050571d854060571d8540705800e808d7a0805803480c06a09056e8189280a056ffd060b05800d80ea7a0c05803c80b80c0c03803e80d86e0d036ed2280e03811581804a0f036fd34e1003805380eb6811036e81f60e12038010ec101204805f80e83a13048033809534140471e00a15048010f95816046e81fa301704805180a74c1705800d808f1018056fd55c1905800e8091481a056e80a76e1b05805f80e2741c0571809b021c05826382c8401d0571df201e05800e809d2c1f05850083e87c1f05811580af68200571f20a21056ff9042205803e80df1e23056e81956c24056e9f542604805180e83829000e800e8080621325803380b0402a020d6ef8100e2c8c4889a96a2c000f803580ce4c2c000b6e9f54062a803480c96406260500"_hex_u8;
/* 2023-12-05T23:48:44Z 69, 44283, 586734,*/
static constexpr auto BENCH_EXAMPLE_08 = "83728ce80000b90befca1001806083b24002b40de6da3203b545e9c35c04b34beede3005b068e8883006d41c80b1e14c07b337e7841208b26beadb2e096e83892e090980518487380a096e82815c0a096e81ce3c0b097181db200c097181d4020d09810084ed600e096e96b0100f0971819a0210086e93da2e0f09803583ee5e1009803583c66c1109800d82bb6e1209800d81d56a1309803c82e622140971819f521509803d84a55c15057181d6161605806283ac5217056e949c5a18056e89e8641806815889e23419067181de321a066e8af2641a076e82a70a1b07803583f2081c076f81e76e1d076e81d33e1e07800d83b8761e086e82a5541f087181de302008805f84ad0021086e81c74022086e81bd3e23086e9288182408806184b3102409803283816025096e91ed662609830a88e70827096e81d14a27097181ce6028096e8cf03829097181883832016f81835c3103806181e0103203804180b8103204863584fe183304800de66434046e9e4c34056e81d6742f429213c0eb602e3d6483b06c283a6e81d73c263d6e82f9581831805485ab360e37805080c62609398b3189880838010603916db1f3583a03000110873199f8623c000000011100"_hex_u8;
/* 2023-04-14T19:36:52Z 77, 20418, 501117,*/
static constexpr auto BENCH_EXAMPLE_09 = "bf2989d00400815bca5c01af1e86f97602800d9d6c03800d8a3404b47988866e05b36287f92e0680109f68078010991a08805ecf1208076e80933e09078062d01c0a078054b6760b078053b6760c076f9c1c0d078054b6760e0771af260f0771b17e10078032f57011078035d56812078054e1581307886b83dc301407817480d13013068005a6001406803d80821a15066ef3201606800ea2181706800da628180671ab1219068054db0c1a06719b001b06815b80a11c1c068050b9301d066fac2a1e068033ab481f06719b1020068035ab721e07803dc2761f0771ae3c20078040f60e210771ce282207800ea4322307882a81a66024078035ad4625076efe7e26078162808e1827078118bb7228076eac7428088010bf58290871a04c2a0871bc722b086fa8382c08803d80a0142d088035d6282e088051c30c2f086efc623008800d9f6231086f986432088117bb7237028010a63034068010c84e2740800ea64c2237832c80933e1f3b830880c454390208813c80955c3905068032c73611348010a03c093c837a808a101b278050ac34093a8051ac34291b8f3b8187401d28881a82cb3a3a0a37977b86d20843000028996686a7083f030f8078d3761b27106e995a08499070839b5a1131000b00"_hex_u8;
/* 2023-11-07T17:59:35Z 48, 4792, 498995,*/
static constexpr auto BENCH_EXAMPLE_10 = "875f89aa1000b51ec09d7201c55cc7a72e02a11aa1fb3203b233a7f95204800ef56205b33ea9d13006803e80b26e07d90ec9dd4008b45eabbe6c09806080ca000a815984e8680a0a6f80925e0a0a803f80e1660c09937c94b7420d086e82f5640a086e80997e0b086f808d320c08800580a5640d086f8089100e08804080c9060f088115819a1c10086e82961a0f0a805f81bc0a100a6ff826110a6ef53e120a807584c60c110a6e818f32120a803c81c246130a805481d508140a8159838410150a7180a55c160a6f80821c170a6fe6101c066fe6101d06805080f854190a6e81b27c1a0a8155819c701e06805180ae0c21046e8b9a222501805180f53422001680f26880f8a62a220116803580da582007058153838e6e21000c800d80a712033a807681ae1c23000308834a82d36023020205815981e03a051a08001700"_hex_u8;
/* 2023-11-16T10:47:08Z 77, 473962, 486863,*/
static constexpr auto BENCH_EXAMPLE_11 = "801980c06000801980c06001801980c06002801980c06003801980c06004801980c06005801980c06006801980c06007801980c06008801980c06009801980c0600a801980c0600b801980c0600c801980c0600d801980c0600e801980c0600f801980c060108019d12c11800f80b1601111800f80b1601111801080b1601111800f80b160100e800f80b160100f801980c060110f800f80b160140d801180b1601111801180b160100d801180b160120c801180b1600f10801180b1600f11801980c0601011800f80b160140e800f80b160110f801980c060170a801180b1601210801980c060140f800f80b1601311801980c0602005801180b1601f07800f80b1601b0c800fca7c1611812081f9601638812081f9601637812081fb001636801080b160142f801980c0600e2a801080b1600f2a801180b1600d25801980c0600e25800f80b1600d27801980c0600e27801980c0600d27801180b1600e26812080b1500c27812081f960201025812081f960200f27812081fc201d101c812081fc201d101d812081fc201d0f1f812081fc201d0f20812081f9601b1016800f80b1600a35800f80b1600a36800f80b1600e32801080b160122f812081f960280040812081fc20121d1b812081f960112713812081f960160d37812081fc20140d2b812081f960130d2d812081fc20130c2c812081fb001b0157812081fb001a0245812081fc20140030812081fc20092747812081fb000b152500"_hex_u8;
/* 2023-10-06T20:44:09Z 40, 341438, 341438,*/
static constexpr auto BENCH_EXAMPLE_12 = "80318f4c0080318f4c0180318f4c0280318f4c0380318f4c0480318f4c0580318f4c0680318f4c078033a57807078033a57807078033a57807078033a57807078033a57807078033a57807078033a57807078033a578070780318f4c0e0180318f4c0d0380318f4c0c0580318f4c0b078033a57803128033a57803128033a57803128033a578031280318f4c0412810b9c28140300810c9c281303028033a57802188033a57802188033a5780218810c9c280b01108033a578001c810c9c2807050f8033a578001b810c98040700158033a578001c810c98040301158033a5780019806ca1240101118033a578001300"_hex_u8;
/* 2023-11-15T21:40:46Z 96, 23608, 138286,*/
static constexpr auto BENCH_EXAMPLE_13 = "8060829f4000b157bab07a01b27cc2b16802b22fbce54603826480a95804803da81a05bc7bcac93806800de55207800daf0608805bc71809805bc7180a800d9d4a0b805bbc700c8152d7180d805bb9380e850a8886260f800d80d33410bf38d3d55011b41dc4eb6012bd70d2ce2e138d3596af7812137180cd501313805e81f7281413718092001513803d81f90016136e8b916c1713801081861a17106e80cd2a18106f80cc3c19106e80cf161911800d80fe781b107180d87c1c106e80fb081d10803e8286701d11800d81c4781f10804082a6002010801081912e21107180ff0021116e81da4a2310850b8b864023116e89db3224116e84ff7e2610897c95993427106f80bb1a240b803581c272250b8032828c10260b6e80d42a270b804082b35a280b800d80fe3e290b805cc0282312821d8697022b0b6e8add562c0b805281c8063007811883f1082313800d80fe3e24137180c9142513800d8380102613803382c00e2713805eb32228136e8494542913800e8186742913806082b74c2a1380528285782b13800d818f7a2c136e84a5562d1380508286702e136f80a46e3e04803f8191364102805481ad4c3d076e809a5a3e077180fe4032136e838b7233138c4790cf384106853584ab624206805b80932a4801806280966c48028168ef04400b7181bd524903806282db5c375b9316acbf703a599c68c5a454385c6e81d63e364a6f80ff64334e817485a6784f023171819536234e800d81826e1e498053829a12420018834c87cb14291d2e840e8bc94c1d2825800d81b7220368811783fe0e271f1f811783e758380f001ecd55809edf6e56000000003a815984ba76008010d54d80aebb4e2c22000000000000002c807682f150007a00"_hex_u8;
/* 2023-12-06T09:18:20Z 93, 68130, 122830,*/
static constexpr auto BENCH_EXAMPLE_14 = "b26beadb2e00800d80ca0a01d41c80b1e14c02b068e8883003800d81af1604b34beede30056e80b14006b151f5d46c07b93e8085b02608b30cf98b1009b14ef6b3040ab176f6ab480bb7078082b8640c800d81c6460d802c80a8080e802c80a8080f802c80a14210802ce50a11802cd722127181ce6012126e81d14a13126e9b8b00141282428dd42c15128051828408150e6e81bd3e150f805f84ad00160f7181de30170f6e81c740180f800d83b876190f6e82a5541a0f6e81d33e1a106e82a70a1b106f81e76e1c10803583f2081d106e82d9401e106e96e4441f107181de321e12815889e2341f127182d60c20126e979d4e21126e8282262410800d82972c25106f838a5822126f82842a23127182d24a2412803e84bc2a2512800d83c81a26126e84f8142712805085a22c27126e889e6a2812801083aa50281280348598102912801082d5522a126e85865c2b127182c7602b1282468c82042c126e84972c2d12805485d93a2d12801083c7322e12815386e1582f126e84fb0c30126f82eb6c3011813a85b47a3111803f869f5c3211805181ed30370d6e84bf0a3411804180e1383809815883aa183a08815a8392203e05807681f140380c6e9e4c4005805485ab363255805183856030406e82f9582c45805185c1001b4f82418df1001a4e803283c50e430026800d83a6201a4b836886be3044010b8b318988084c0101803183a6120776800d828a1e087682338ae050301c33873199f8624d010032813986bc663c1034800d83a5220a6f800d82be52048000805183e364084907800d83cc4a018005815987b41e1832000017884b9dce72035035803284c11e00800885769d9538192f0000000002001000"_hex_u8;
/* 2023-12-14T02:02:29Z 55, 247754, 247754,*/
static constexpr auto BENCH_EXAMPLE_15 = "801980c06000801980c06001801980c06002801980c06003801980c06004801980c06005801980c06006801980c06007801980c06008801980c06009801980c0600a801980c0600b801980c0600c801980c0600d801980c0600e801180b1600e0e801180b1600e0e801180b1600e0e801180b1600e0e801180b1600e0e801180b1600e0e801180b1600d07801180b1600f06801180b1600c0a801180b1600f08801180b1600c0c801180b1600c0d801180b1600c0e801180b160100b801180b1601309812081fc200e2a812081fc200e29812081fc200e28812081fc200e0e18812081fc200e0e17801980c060042e812081fc200e0d07812081fc200e0d08812081fc200e0c0a812081fc200e0d0a801980c060081e812081fc200f0c0c812081fc200f0c0d812081fc200f0c0e801180b160083a801180b1600426801980c0600b20801980c0600a22812081fc200f0b30801180b160022b801180b160022b812081fc20062422812081fc2006220b812081fc200c0a1e812081fc2012041a00"_hex_u8;
/* 2023-12-14T15:17:20Z 76, 102600, 103935,*/
static constexpr auto BENCH_EXAMPLE_16 = "801980c06000801980c06001801980c06002801980c06003801980c06004801180b1600404801180b1600404801180b1600404801980c0600504801980c0600802801980c0600803801180b1600704801980c0600804801280b1600804812081fc200810812081fc20080f812081fc20080e801180b160080c800f80b160080d801980c060090d801180b160090e801980c0600a0e812181fc200a0c801180b1600a0d812181fd400a0c801980c0600a1c801980c0600916801180b1600719801180b160061b801980c0600d15801980c0600717812081fc200718801980c0600716801180b160072d801180b1600722801180b1600525801980c060091b801980c060071e801080b160071f801280b160061d812081fc20063a812181f960160815801280b1600525801980c0600625801180b1600626801980c0600726801980c0600536801180b160032b801980c060042b801280b160032d801980c060033e801180b160043e812181fc20100c27801080b160042f801980c0600342801180b1600442812081fc20150d25800f80b1600245812081fd40120619812081fc20040243812081fc20120c2c812081fd40120a1d812181fb00100623812081fc20030347812081fc20072126801980c0600236812081fc20040d2b812081fc20120328801980c0600237801180b1600337812081fc20052230801180b1600239812081fc2008242c812081fd4005112d812081fb00070b32812081f96011034700"_hex_u8;
/* 2023-12-15T07:12:29Z 98, 112693, 112730,*/
static constexpr auto BENCH_EXAMPLE_17 = "801980c06000801980c06001801980c06002801980c06003801980c06004801980c06005801980c06006801180b1600606801180b1600606801180b1600606801180b1600606801280b1600606801180b1600606801180b1600606801980c0600d00801980c0600b03801980c0600b04801980c0600f01812081fc200a16812081fc200a15812081fc200a14812081fc200a13812081fd400a12812181fc200a11812181fc200a0f801180b1600a10801180b1600a10801980c0600a10801180b1600b10801180b1600b10801980c0600621801980c0600915801980c060041b801180b160051b801980c0600f12801980c0600f13801980c0600d15801980c0600c17801980c060072e800f80b160082e812181fc200d150e801980c0600922801180b1600923801980c0600823801180b1600623801180b1600a20801180b1600e1c801180b1600b20801180b1600b21801980c0600a3e800f80b1600b3e801980c0600931801180b1600a31812181fc20140325801180b1600a30801180b160054c801180b160043b801980c0600336812181fc200253812081f960090944812081fc2007003c801980c0600339801180b1600433801980c0600453801980c0600340801980c060033d801080b160043d812081f960070854801980c060045a801180b160055a801180b1600545801980c0600643801980c0600641801280b1600739801180b1600562812081fc20121f27812181fc20210137812181fc2016112f801980c0600259801980c0600156812181fc20053a31801180b160025c801180b1600257801980c0600357812081fc200d2d1e812181fc20102444812181fc20035a801180b160035b801980c0600751812181fc2007392a812181fc20025f801980c060045e801180b1600350812081fc20070f6f801180b1600263812181fc201b1322812181fc2011283b812081fc2002442100"_hex_u8;
/* 2023-12-16T02:25:33Z 99, 112399, 112399,*/
static constexpr auto BENCH_EXAMPLE_18 = "801980c06000801980c06001801980c06002801980c06003801980c06004801980c06005801980c06006801980c06007801180b16008801180b16009801180b1600a801180b1600a0a801180b1600a0a801180b1600a0a801180b1600a0a801980c0600d06801180b1600b09801980c0601005801180b1600c0a801980c0600d0a801980c0601106801180b1600e0a801980c0601207801980c0601207801180b160100a812081e668100a812081e668100a812081e668100a801980c0601407801980c0601606812081fc201226812081fc201225812081fc201224812081fc201223801180b1600e21801980c0600b1e801180b1600c1e801180b1601316801980c060091b801980c0601312801980c0600a1c801180b160190e801180b1601315801180b1600e1b801180b1601713801180b1600f1c801980c0600d34801980c0600d30801980c060102e801980c060122d801980c0600b2a801980c0600b2a801980c0600b2b801180b1601122801180b1600e26801180b1601025801180b1600f26812081fc20280032812081fc20270034812081fc20250034801180b1600d4b801980c0600d457a809a000d46801980c0601044801980c0600e46801180b1600f43801180b160123f801180b160123e801180b1601130801180b1601131801180b1601131812081fc20230a36801980c0600a5a801180b1600a5b801980c0600a5b801180b1600b5b801980c0600b5a801180b1600f57801180b1600d3f801980c0600669801980c0600568801980c0600466801180b1600945801180b1600649801180b1600945812081fc2018234b812081fc20142534812081fc20142532812081fc20142530801180b160074d801180b1600a4b801180b1600a4a812081fc20221662812081fc200c0472812081fc20072e42812081fc20062c23812081fc20100572812081fc200f036c812081fc2001345100"_hex_u8;
/* 2023-03-31T19:24:02Z 78, 90393, 152832,*/
static constexpr auto BENCH_EXAMPLE_19 = "800dd042008028b13c018028b13c028028b13c038029b13c048029b13c058029b13c0680299948078029b13c088029b13c09802899480a802899480b8028b13c0c80299e700d802899480e802999480f8029b13c10802999481180299948128028b13c138029b13c1480289e701580289948168028b13c1780289948188028994819802899481a802999481b802999481c802899481d802999481e8028b13c1f8029b13c20802999482180299948228028b13c2380298c242480289948258029b13c2680288c242780298c242880299e70298f5a80ea762a824780aa00292a82038090402429813fcf00152a8203809040142a813ff700112982038090402d002d813ff70028002c8203809040270024824780aa00270025820380904025002882038090401e022a82038090401d042782038090401c01298203809040190029813ff700170028813ff700140128807b9258120128841280f6402c01002e82038090402b00062b820380904027000031813ff70011192d82038090401d000129851981a9403a0000003b82038090400c182e813ff7000b0f2982038090401314141b807b925805192b84568190001121000334807bdd400149824780aa00001f2a813ff700003d0b8203809040050d1915807bdd4001498728828f400b010004050501000a050c851981a9400104050b061a0400"_hex_u8;

static void LinearizeOptimallyExample00(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_00); }
static void LinearizeOptimallyExample01(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_01); }
static void LinearizeOptimallyExample02(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_02); }
static void LinearizeOptimallyExample03(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_03); }
static void LinearizeOptimallyExample04(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_04); }
static void LinearizeOptimallyExample05(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_05); }
static void LinearizeOptimallyExample06(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_06); }
static void LinearizeOptimallyExample07(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_07); }
static void LinearizeOptimallyExample08(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_08); }
static void LinearizeOptimallyExample09(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_09); }
static void LinearizeOptimallyExample10(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_10); }
static void LinearizeOptimallyExample11(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_11); }
static void LinearizeOptimallyExample12(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_12); }
static void LinearizeOptimallyExample13(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_13); }
static void LinearizeOptimallyExample14(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_14); }
static void LinearizeOptimallyExample15(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_15); }
static void LinearizeOptimallyExample16(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_16); }
static void LinearizeOptimallyExample17(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_17); }
static void LinearizeOptimallyExample18(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_18); }
static void LinearizeOptimallyExample19(benchmark::Bench& bench) { BenchLinearizeOptimally(bench, BENCH_EXAMPLE_19); }

BENCHMARK(Linearize16TxWorstCase20Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize16TxWorstCase120Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize32TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize32TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize48TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize48TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize64TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize64TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize75TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize75TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize99TxWorstCase5000Iters, benchmark::PriorityLevel::HIGH);
BENCHMARK(Linearize99TxWorstCase15000Iters, benchmark::PriorityLevel::HIGH);

BENCHMARK(LinearizeNoIters16TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters32TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters48TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters64TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters75TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters99TxWorstCaseAnc, benchmark::PriorityLevel::HIGH);

BENCHMARK(LinearizeNoIters16TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters32TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters48TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters64TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters75TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeNoIters99TxWorstCaseLIMO, benchmark::PriorityLevel::HIGH);

BENCHMARK(PostLinearize16TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(PostLinearize32TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(PostLinearize48TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(PostLinearize64TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(PostLinearize75TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(PostLinearize99TxWorstCase, benchmark::PriorityLevel::HIGH);

BENCHMARK(MergeLinearizations16TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(MergeLinearizations32TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(MergeLinearizations48TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(MergeLinearizations64TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(MergeLinearizations75TxWorstCase, benchmark::PriorityLevel::HIGH);
BENCHMARK(MergeLinearizations99TxWorstCase, benchmark::PriorityLevel::HIGH);

BENCHMARK(LinearizeOptimallyExample00, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample01, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample02, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample03, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample04, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample05, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample06, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample07, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample08, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample09, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample10, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample11, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample12, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample13, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample14, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample15, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample16, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample17, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample18, benchmark::PriorityLevel::HIGH);
BENCHMARK(LinearizeOptimallyExample19, benchmark::PriorityLevel::HIGH);