1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
// Copyright (c) 2015-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <bench/bench.h>
#include <chainparams.h>
#include <test/setup_common.h>
#include <validation.h>
#include <algorithm>
#include <assert.h>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <regex>
void benchmark::ConsolePrinter::header()
{
std::cout << "# Benchmark, evals, iterations, total, min, max, median" << std::endl;
}
void benchmark::ConsolePrinter::result(const State& state)
{
auto results = state.m_elapsed_results;
std::sort(results.begin(), results.end());
double total = state.m_num_iters * std::accumulate(results.begin(), results.end(), 0.0);
double front = 0;
double back = 0;
double median = 0;
if (!results.empty()) {
front = results.front();
back = results.back();
size_t mid = results.size() / 2;
median = results[mid];
if (0 == results.size() % 2) {
median = (results[mid] + results[mid + 1]) / 2;
}
}
std::cout << std::setprecision(6);
std::cout << state.m_name << ", " << state.m_num_evals << ", " << state.m_num_iters << ", " << total << ", " << front << ", " << back << ", " << median << std::endl;
}
void benchmark::ConsolePrinter::footer() {}
benchmark::PlotlyPrinter::PlotlyPrinter(std::string plotly_url, int64_t width, int64_t height)
: m_plotly_url(plotly_url), m_width(width), m_height(height)
{
}
void benchmark::PlotlyPrinter::header()
{
std::cout << "<html><head>"
<< "<script src=\"" << m_plotly_url << "\"></script>"
<< "</head><body><div id=\"myDiv\" style=\"width:" << m_width << "px; height:" << m_height << "px\"></div>"
<< "<script> var data = ["
<< std::endl;
}
void benchmark::PlotlyPrinter::result(const State& state)
{
std::cout << "{ " << std::endl
<< " name: '" << state.m_name << "', " << std::endl
<< " y: [";
const char* prefix = "";
for (const auto& e : state.m_elapsed_results) {
std::cout << prefix << std::setprecision(6) << e;
prefix = ", ";
}
std::cout << "]," << std::endl
<< " boxpoints: 'all', jitter: 0.3, pointpos: 0, type: 'box',"
<< std::endl
<< "}," << std::endl;
}
void benchmark::PlotlyPrinter::footer()
{
std::cout << "]; var layout = { showlegend: false, yaxis: { rangemode: 'tozero', autorange: true } };"
<< "Plotly.newPlot('myDiv', data, layout);"
<< "</script></body></html>";
}
benchmark::BenchRunner::BenchmarkMap& benchmark::BenchRunner::benchmarks()
{
static std::map<std::string, Bench> benchmarks_map;
return benchmarks_map;
}
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func, uint64_t num_iters_for_one_second)
{
benchmarks().insert(std::make_pair(name, Bench{func, num_iters_for_one_second}));
}
void benchmark::BenchRunner::RunAll(Printer& printer, uint64_t num_evals, double scaling, const std::string& filter, bool is_list_only)
{
if (!std::ratio_less_equal<benchmark::clock::period, std::micro>::value) {
std::cerr << "WARNING: Clock precision is worse than microsecond - benchmarks may be less accurate!\n";
}
#ifdef DEBUG
std::cerr << "WARNING: This is a debug build - may result in slower benchmarks.\n";
#endif
std::regex reFilter(filter);
std::smatch baseMatch;
printer.header();
for (const auto& p : benchmarks()) {
TestingSetup test{CBaseChainParams::REGTEST};
{
assert(::ChainActive().Height() == 0);
const bool witness_enabled{IsWitnessEnabled(::ChainActive().Tip(), Params().GetConsensus())};
assert(witness_enabled);
}
if (!std::regex_match(p.first, baseMatch, reFilter)) {
continue;
}
uint64_t num_iters = static_cast<uint64_t>(p.second.num_iters_for_one_second * scaling);
if (0 == num_iters) {
num_iters = 1;
}
State state(p.first, num_evals, num_iters, printer);
if (!is_list_only) {
p.second.func(state);
}
printer.result(state);
}
printer.footer();
}
bool benchmark::State::UpdateTimer(const benchmark::time_point current_time)
{
if (m_start_time != time_point()) {
std::chrono::duration<double> diff = current_time - m_start_time;
m_elapsed_results.push_back(diff.count() / m_num_iters);
if (m_elapsed_results.size() == m_num_evals) {
return false;
}
}
m_num_iters_left = m_num_iters - 1;
return true;
}
|