1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
// Copyright (c) 2020-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <addrman.h>
#include <bench/bench.h>
#include <netbase.h>
#include <netgroup.h>
#include <random.h>
#include <util/check.h>
#include <util/time.h>
#include <optional>
#include <vector>
/* A "source" is a source address from which we have received a bunch of other addresses. */
static constexpr size_t NUM_SOURCES = 64;
static constexpr size_t NUM_ADDRESSES_PER_SOURCE = 256;
static NetGroupManager EMPTY_NETGROUPMAN{std::vector<bool>()};
static constexpr uint32_t ADDRMAN_CONSISTENCY_CHECK_RATIO{0};
static std::vector<CAddress> g_sources;
static std::vector<std::vector<CAddress>> g_addresses;
static void CreateAddresses()
{
if (g_sources.size() > 0) { // already created
return;
}
FastRandomContext rng(uint256(std::vector<unsigned char>(32, 123)));
auto randAddr = [&rng]() {
in6_addr addr;
memcpy(&addr, rng.randbytes(sizeof(addr)).data(), sizeof(addr));
uint16_t port;
memcpy(&port, rng.randbytes(sizeof(port)).data(), sizeof(port));
if (port == 0) {
port = 1;
}
CAddress ret(CService(addr, port), NODE_NETWORK);
ret.nTime = Now<NodeSeconds>();
return ret;
};
for (size_t source_i = 0; source_i < NUM_SOURCES; ++source_i) {
g_sources.emplace_back(randAddr());
g_addresses.emplace_back();
for (size_t addr_i = 0; addr_i < NUM_ADDRESSES_PER_SOURCE; ++addr_i) {
g_addresses[source_i].emplace_back(randAddr());
}
}
}
static void AddAddressesToAddrMan(AddrMan& addrman)
{
for (size_t source_i = 0; source_i < NUM_SOURCES; ++source_i) {
addrman.Add(g_addresses[source_i], g_sources[source_i]);
}
}
static void FillAddrMan(AddrMan& addrman)
{
CreateAddresses();
AddAddressesToAddrMan(addrman);
}
/* Benchmarks */
static void AddrManAdd(benchmark::Bench& bench)
{
CreateAddresses();
bench.run([&] {
AddrMan addrman{EMPTY_NETGROUPMAN, /*deterministic=*/false, ADDRMAN_CONSISTENCY_CHECK_RATIO};
AddAddressesToAddrMan(addrman);
});
}
static void AddrManSelect(benchmark::Bench& bench)
{
AddrMan addrman{EMPTY_NETGROUPMAN, /*deterministic=*/false, ADDRMAN_CONSISTENCY_CHECK_RATIO};
FillAddrMan(addrman);
bench.run([&] {
const auto& address = addrman.Select();
assert(address.first.GetPort() > 0);
});
}
// The worst case performance of the Select() function is when there is only
// one address on the table, because it linearly searches every position of
// several buckets before identifying the correct bucket
static void AddrManSelectFromAlmostEmpty(benchmark::Bench& bench)
{
AddrMan addrman{EMPTY_NETGROUPMAN, /*deterministic=*/false, ADDRMAN_CONSISTENCY_CHECK_RATIO};
// Add one address to the new table
CService addr = Lookup("250.3.1.1", 8333, false).value();
addrman.Add({CAddress(addr, NODE_NONE)}, addr);
bench.run([&] {
(void)addrman.Select();
});
}
static void AddrManSelectByNetwork(benchmark::Bench& bench)
{
AddrMan addrman{EMPTY_NETGROUPMAN, /*deterministic=*/false, ADDRMAN_CONSISTENCY_CHECK_RATIO};
// add single I2P address to new table
CService i2p_service;
i2p_service.SetSpecial("udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna.b32.i2p");
CAddress i2p_address(i2p_service, NODE_NONE);
i2p_address.nTime = Now<NodeSeconds>();
const CNetAddr source{LookupHost("252.2.2.2", false).value()};
addrman.Add({i2p_address}, source);
FillAddrMan(addrman);
bench.run([&] {
(void)addrman.Select(/*new_only=*/false, NET_I2P);
});
}
static void AddrManGetAddr(benchmark::Bench& bench)
{
AddrMan addrman{EMPTY_NETGROUPMAN, /*deterministic=*/false, ADDRMAN_CONSISTENCY_CHECK_RATIO};
FillAddrMan(addrman);
bench.run([&] {
const auto& addresses = addrman.GetAddr(/*max_addresses=*/2500, /*max_pct=*/23, /*network=*/std::nullopt);
assert(addresses.size() > 0);
});
}
static void AddrManAddThenGood(benchmark::Bench& bench)
{
auto markSomeAsGood = [](AddrMan& addrman) {
for (size_t source_i = 0; source_i < NUM_SOURCES; ++source_i) {
for (size_t addr_i = 0; addr_i < NUM_ADDRESSES_PER_SOURCE; ++addr_i) {
addrman.Good(g_addresses[source_i][addr_i]);
}
}
};
CreateAddresses();
bench.run([&] {
// To make the benchmark independent of the number of evaluations, we always prepare a new addrman.
// This is necessary because AddrMan::Good() method modifies the object, affecting the timing of subsequent calls
// to the same method and we want to do the same amount of work in every loop iteration.
//
// This has some overhead (exactly the result of AddrManAdd benchmark), but that overhead is constant so improvements in
// AddrMan::Good() will still be noticeable.
AddrMan addrman{EMPTY_NETGROUPMAN, /*deterministic=*/false, ADDRMAN_CONSISTENCY_CHECK_RATIO};
AddAddressesToAddrMan(addrman);
markSomeAsGood(addrman);
});
}
BENCHMARK(AddrManAdd, benchmark::PriorityLevel::HIGH);
BENCHMARK(AddrManSelect, benchmark::PriorityLevel::HIGH);
BENCHMARK(AddrManSelectFromAlmostEmpty, benchmark::PriorityLevel::HIGH);
BENCHMARK(AddrManSelectByNetwork, benchmark::PriorityLevel::HIGH);
BENCHMARK(AddrManGetAddr, benchmark::PriorityLevel::HIGH);
BENCHMARK(AddrManAddThenGood, benchmark::PriorityLevel::HIGH);
|