aboutsummaryrefslogtreecommitdiff
path: root/qa/rpc-tests/prioritise_transaction.py
blob: f376ceee5ecb637ccaf91f489b69160bfc1461ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python2
# Copyright (c) 2015 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.

#
# Test PrioritiseTransaction code
#

from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *

COIN = 100000000

class PrioritiseTransactionTest(BitcoinTestFramework):

    def __init__(self):
        # Some pre-processing to create a bunch of OP_RETURN txouts to insert into transactions we create
        # So we have big transactions (and therefore can't fit very many into each block)
        # create one script_pubkey
        script_pubkey = "6a4d0200" #OP_RETURN OP_PUSH2 512 bytes
        for i in xrange (512):
            script_pubkey = script_pubkey + "01"
        # concatenate 128 txouts of above script_pubkey which we'll insert before the txout for change
        self.txouts = "81"
        for k in xrange(128):
            # add txout value
            self.txouts = self.txouts + "0000000000000000"
            # add length of script_pubkey
            self.txouts = self.txouts + "fd0402"
            # add script_pubkey
            self.txouts = self.txouts + script_pubkey

    def setup_chain(self):
        print("Initializing test directory "+self.options.tmpdir)
        initialize_chain_clean(self.options.tmpdir, 1)

    def setup_network(self):
        self.nodes = []
        self.is_network_split = False

        self.nodes.append(start_node(0, self.options.tmpdir, ["-debug", "-printpriority=1"]))
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

    def create_confirmed_utxos(self, count):
        self.nodes[0].generate(int(0.5*count)+101)
        utxos = self.nodes[0].listunspent()
        iterations = count - len(utxos)
        addr1 = self.nodes[0].getnewaddress()
        addr2 = self.nodes[0].getnewaddress()
        if iterations <= 0:
            return utxos
        for i in xrange(iterations):
            t = utxos.pop()
            fee = self.relayfee
            inputs = []
            inputs.append({ "txid" : t["txid"], "vout" : t["vout"]})
            outputs = {}
            send_value = t['amount'] - fee
            outputs[addr1] = satoshi_round(send_value/2)
            outputs[addr2] = satoshi_round(send_value/2)
            raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
            signed_tx = self.nodes[0].signrawtransaction(raw_tx)["hex"]
            txid = self.nodes[0].sendrawtransaction(signed_tx)

        while (self.nodes[0].getmempoolinfo()['size'] > 0):
            self.nodes[0].generate(1)

        utxos = self.nodes[0].listunspent()
        assert(len(utxos) >= count)
        return utxos

    def create_lots_of_big_transactions(self, utxos, fee):
        addr = self.nodes[0].getnewaddress()
        txids = []
        for i in xrange(len(utxos)):
            t = utxos.pop()
            inputs = []
            inputs.append({ "txid" : t["txid"], "vout" : t["vout"]})
            outputs = {}
            send_value = t['amount'] - fee
            outputs[addr] = satoshi_round(send_value)
            rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
            newtx = rawtx[0:92]
            newtx = newtx + self.txouts
            newtx = newtx + rawtx[94:]
            signresult = self.nodes[0].signrawtransaction(newtx, None, None, "NONE")
            txid = self.nodes[0].sendrawtransaction(signresult["hex"], True)
            txids.append(txid)
        return txids

    def run_test(self):
        utxos = self.create_confirmed_utxos(90)
        base_fee = self.relayfee*100 # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        for i in xrange(3):
            txids.append([])
            txids[i] = self.create_lots_of_big_transactions(utxos[30*i:30*i+30], (i+1)*base_fee)

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined (lower
        # the priority to ensure its not mined due to priority)
        self.nodes[0].prioritisetransaction(txids[0][0], 0, int(3*base_fee*COIN))
        self.nodes[0].prioritisetransaction(txids[0][1], -1e15, 0)

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        print "Assert that prioritised transasction was mined"
        assert(txids[0][0] not in mempool)
        assert(txids[0][1] in mempool)

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x

        # Something high-fee should have been mined!
        assert(high_fee_tx != None)

        # Add a prioritisation before a tx is in the mempool (de-prioritising a
        # high-fee transaction).
        self.nodes[0].prioritisetransaction(high_fee_tx, -1e15, -int(2*base_fee*COIN))

        # Add everything back to mempool
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Check to make sure our high fee rate tx is back in the mempool
        mempool = self.nodes[0].getrawmempool()
        assert(high_fee_tx in mempool)

        # Now verify the high feerate transaction isn't mined.
        self.nodes[0].generate(5)

        # High fee transaction should not have been mined, but other high fee rate
        # transactions should have been.
        mempool = self.nodes[0].getrawmempool()
        print "Assert that de-prioritised transaction is still in mempool"
        assert(high_fee_tx in mempool)
        for x in txids[2]:
            if (x != high_fee_tx):
                assert(x not in mempool)

if __name__ == '__main__':
    PrioritiseTransactionTest().main()