aboutsummaryrefslogtreecommitdiff
path: root/src/test/fuzz/cluster_linearize.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/test/fuzz/cluster_linearize.cpp')
-rw-r--r--src/test/fuzz/cluster_linearize.cpp1120
1 files changed, 1120 insertions, 0 deletions
diff --git a/src/test/fuzz/cluster_linearize.cpp b/src/test/fuzz/cluster_linearize.cpp
new file mode 100644
index 0000000000..5b3770636a
--- /dev/null
+++ b/src/test/fuzz/cluster_linearize.cpp
@@ -0,0 +1,1120 @@
+// Copyright (c) The Bitcoin Core developers
+// Distributed under the MIT software license, see the accompanying
+// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+
+#include <cluster_linearize.h>
+#include <random.h>
+#include <serialize.h>
+#include <streams.h>
+#include <test/fuzz/fuzz.h>
+#include <test/fuzz/FuzzedDataProvider.h>
+#include <test/util/cluster_linearize.h>
+#include <util/bitset.h>
+#include <util/feefrac.h>
+
+#include <algorithm>
+#include <stdint.h>
+#include <vector>
+#include <utility>
+
+using namespace cluster_linearize;
+
+namespace {
+
+/** A simple finder class for candidate sets.
+ *
+ * This class matches SearchCandidateFinder in interface and behavior, though with fewer
+ * optimizations.
+ */
+template<typename SetType>
+class SimpleCandidateFinder
+{
+ /** Internal dependency graph. */
+ const DepGraph<SetType>& m_depgraph;
+ /** Which transaction are left to include. */
+ SetType m_todo;
+
+public:
+ /** Construct an SimpleCandidateFinder for a given graph. */
+ SimpleCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
+ m_depgraph(depgraph), m_todo{depgraph.Positions()} {}
+
+ /** Remove a set of transactions from the set of to-be-linearized ones. */
+ void MarkDone(SetType select) noexcept { m_todo -= select; }
+
+ /** Determine whether unlinearized transactions remain. */
+ bool AllDone() const noexcept { return m_todo.None(); }
+
+ /** Find a candidate set using at most max_iterations iterations, and the number of iterations
+ * actually performed. If that number is less than max_iterations, then the result is optimal.
+ *
+ * Complexity: O(N * M), where M is the number of connected topological subsets of the cluster.
+ * That number is bounded by M <= 2^(N-1).
+ */
+ std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations) const noexcept
+ {
+ uint64_t iterations_left = max_iterations;
+ // Queue of work units. Each consists of:
+ // - inc: set of transactions definitely included
+ // - und: set of transactions that can be added to inc still
+ std::vector<std::pair<SetType, SetType>> queue;
+ // Initially we have just one queue element, with the entire graph in und.
+ queue.emplace_back(SetType{}, m_todo);
+ // Best solution so far.
+ SetInfo best(m_depgraph, m_todo);
+ // Process the queue.
+ while (!queue.empty() && iterations_left) {
+ --iterations_left;
+ // Pop top element of the queue.
+ auto [inc, und] = queue.back();
+ queue.pop_back();
+ // Look for a transaction to consider adding/removing.
+ bool inc_none = inc.None();
+ for (auto split : und) {
+ // If inc is empty, consider any split transaction. Otherwise only consider
+ // transactions that share ancestry with inc so far (which means only connected
+ // sets will be considered).
+ if (inc_none || inc.Overlaps(m_depgraph.Ancestors(split))) {
+ // Add a queue entry with split included.
+ SetInfo new_inc(m_depgraph, inc | (m_todo & m_depgraph.Ancestors(split)));
+ queue.emplace_back(new_inc.transactions, und - new_inc.transactions);
+ // Add a queue entry with split excluded.
+ queue.emplace_back(inc, und - m_depgraph.Descendants(split));
+ // Update statistics to account for the candidate new_inc.
+ if (new_inc.feerate > best.feerate) best = new_inc;
+ break;
+ }
+ }
+ }
+ return {std::move(best), max_iterations - iterations_left};
+ }
+};
+
+/** A very simple finder class for optimal candidate sets, which tries every subset.
+ *
+ * It is even simpler than SimpleCandidateFinder, and is primarily included here to test the
+ * correctness of SimpleCandidateFinder, which is then used to test the correctness of
+ * SearchCandidateFinder.
+ */
+template<typename SetType>
+class ExhaustiveCandidateFinder
+{
+ /** Internal dependency graph. */
+ const DepGraph<SetType>& m_depgraph;
+ /** Which transaction are left to include. */
+ SetType m_todo;
+
+public:
+ /** Construct an ExhaustiveCandidateFinder for a given graph. */
+ ExhaustiveCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
+ m_depgraph(depgraph), m_todo{depgraph.Positions()} {}
+
+ /** Remove a set of transactions from the set of to-be-linearized ones. */
+ void MarkDone(SetType select) noexcept { m_todo -= select; }
+
+ /** Determine whether unlinearized transactions remain. */
+ bool AllDone() const noexcept { return m_todo.None(); }
+
+ /** Find the optimal remaining candidate set.
+ *
+ * Complexity: O(N * 2^N).
+ */
+ SetInfo<SetType> FindCandidateSet() const noexcept
+ {
+ // Best solution so far.
+ SetInfo<SetType> best{m_todo, m_depgraph.FeeRate(m_todo)};
+ // The number of combinations to try.
+ uint64_t limit = (uint64_t{1} << m_todo.Count()) - 1;
+ // Try the transitive closure of every non-empty subset of m_todo.
+ for (uint64_t x = 1; x < limit; ++x) {
+ // If bit number b is set in x, then the remaining ancestors of the b'th remaining
+ // transaction in m_todo are included.
+ SetType txn;
+ auto x_shifted{x};
+ for (auto i : m_todo) {
+ if (x_shifted & 1) txn |= m_depgraph.Ancestors(i);
+ x_shifted >>= 1;
+ }
+ SetInfo cur(m_depgraph, txn & m_todo);
+ if (cur.feerate > best.feerate) best = cur;
+ }
+ return best;
+ }
+};
+
+/** A simple linearization algorithm.
+ *
+ * This matches Linearize() in interface and behavior, though with fewer optimizations, lacking
+ * the ability to pass in an existing linearization, and using just SimpleCandidateFinder rather
+ * than AncestorCandidateFinder and SearchCandidateFinder.
+ */
+template<typename SetType>
+std::pair<std::vector<ClusterIndex>, bool> SimpleLinearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations)
+{
+ std::vector<ClusterIndex> linearization;
+ SimpleCandidateFinder finder(depgraph);
+ SetType todo = depgraph.Positions();
+ bool optimal = true;
+ while (todo.Any()) {
+ auto [candidate, iterations_done] = finder.FindCandidateSet(max_iterations);
+ if (iterations_done == max_iterations) optimal = false;
+ depgraph.AppendTopo(linearization, candidate.transactions);
+ todo -= candidate.transactions;
+ finder.MarkDone(candidate.transactions);
+ max_iterations -= iterations_done;
+ }
+ return {std::move(linearization), optimal};
+}
+
+/** Stitch connected components together in a DepGraph, guaranteeing its corresponding cluster is connected. */
+template<typename BS>
+void MakeConnected(DepGraph<BS>& depgraph)
+{
+ auto todo = depgraph.Positions();
+ auto comp = depgraph.FindConnectedComponent(todo);
+ Assume(depgraph.IsConnected(comp));
+ todo -= comp;
+ while (todo.Any()) {
+ auto nextcomp = depgraph.FindConnectedComponent(todo);
+ Assume(depgraph.IsConnected(nextcomp));
+ depgraph.AddDependencies(BS::Singleton(comp.Last()), nextcomp.First());
+ todo -= nextcomp;
+ comp = nextcomp;
+ }
+}
+
+/** Given a dependency graph, and a todo set, read a topological subset of todo from reader. */
+template<typename SetType>
+SetType ReadTopologicalSet(const DepGraph<SetType>& depgraph, const SetType& todo, SpanReader& reader)
+{
+ uint64_t mask{0};
+ try {
+ reader >> VARINT(mask);
+ } catch(const std::ios_base::failure&) {}
+ SetType ret;
+ for (auto i : todo) {
+ if (!ret[i]) {
+ if (mask & 1) ret |= depgraph.Ancestors(i);
+ mask >>= 1;
+ }
+ }
+ return ret & todo;
+}
+
+/** Given a dependency graph, construct any valid linearization for it, reading from a SpanReader. */
+template<typename BS>
+std::vector<ClusterIndex> ReadLinearization(const DepGraph<BS>& depgraph, SpanReader& reader)
+{
+ std::vector<ClusterIndex> linearization;
+ TestBitSet todo = depgraph.Positions();
+ // In every iteration one topologically-valid transaction is appended to linearization.
+ while (todo.Any()) {
+ // Compute the set of transactions with no not-yet-included ancestors.
+ TestBitSet potential_next;
+ for (auto j : todo) {
+ if ((depgraph.Ancestors(j) & todo) == TestBitSet::Singleton(j)) {
+ potential_next.Set(j);
+ }
+ }
+ // There must always be one (otherwise there is a cycle in the graph).
+ assert(potential_next.Any());
+ // Read a number from reader, and interpret it as index into potential_next.
+ uint64_t idx{0};
+ try {
+ reader >> VARINT(idx);
+ } catch (const std::ios_base::failure&) {}
+ idx %= potential_next.Count();
+ // Find out which transaction that corresponds to.
+ for (auto j : potential_next) {
+ if (idx == 0) {
+ // When found, add it to linearization and remove it from todo.
+ linearization.push_back(j);
+ assert(todo[j]);
+ todo.Reset(j);
+ break;
+ }
+ --idx;
+ }
+ }
+ return linearization;
+}
+
+} // namespace
+
+FUZZ_TARGET(clusterlin_depgraph_sim)
+{
+ // Simulation test to verify the full behavior of DepGraph.
+
+ FuzzedDataProvider provider(buffer.data(), buffer.size());
+
+ /** Real DepGraph being tested. */
+ DepGraph<TestBitSet> real;
+ /** Simulated DepGraph (sim[i] is std::nullopt if position i does not exist; otherwise,
+ * sim[i]->first is its individual feerate, and sim[i]->second is its set of ancestors. */
+ std::array<std::optional<std::pair<FeeFrac, TestBitSet>>, TestBitSet::Size()> sim;
+ /** The number of non-nullopt position in sim. */
+ ClusterIndex num_tx_sim{0};
+
+ /** Read a valid index of a transaction from the provider. */
+ auto idx_fn = [&]() {
+ auto offset = provider.ConsumeIntegralInRange<ClusterIndex>(0, num_tx_sim - 1);
+ for (ClusterIndex i = 0; i < sim.size(); ++i) {
+ if (!sim[i].has_value()) continue;
+ if (offset == 0) return i;
+ --offset;
+ }
+ assert(false);
+ return ClusterIndex(-1);
+ };
+
+ /** Read a valid subset of the transactions from the provider. */
+ auto subset_fn = [&]() {
+ auto range = (uint64_t{1} << num_tx_sim) - 1;
+ const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
+ auto mask_shifted = mask;
+ TestBitSet subset;
+ for (ClusterIndex i = 0; i < sim.size(); ++i) {
+ if (!sim[i].has_value()) continue;
+ if (mask_shifted & 1) {
+ subset.Set(i);
+ }
+ mask_shifted >>= 1;
+ }
+ assert(mask_shifted == 0);
+ return subset;
+ };
+
+ /** Read any set of transactions from the provider (including unused positions). */
+ auto set_fn = [&]() {
+ auto range = (uint64_t{1} << sim.size()) - 1;
+ const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
+ TestBitSet set;
+ for (ClusterIndex i = 0; i < sim.size(); ++i) {
+ if ((mask >> i) & 1) {
+ set.Set(i);
+ }
+ }
+ return set;
+ };
+
+ /** Propagate ancestor information in sim. */
+ auto anc_update_fn = [&]() {
+ while (true) {
+ bool updates{false};
+ for (ClusterIndex chl = 0; chl < sim.size(); ++chl) {
+ if (!sim[chl].has_value()) continue;
+ for (auto par : sim[chl]->second) {
+ if (!sim[chl]->second.IsSupersetOf(sim[par]->second)) {
+ sim[chl]->second |= sim[par]->second;
+ updates = true;
+ }
+ }
+ }
+ if (!updates) break;
+ }
+ };
+
+ /** Compare the state of transaction i in the simulation with the real one. */
+ auto check_fn = [&](ClusterIndex i) {
+ // Compare used positions.
+ assert(real.Positions()[i] == sim[i].has_value());
+ if (sim[i].has_value()) {
+ // Compare feerate.
+ assert(real.FeeRate(i) == sim[i]->first);
+ // Compare ancestors (note that SanityCheck verifies correspondence between ancestors
+ // and descendants, so we can restrict ourselves to ancestors here).
+ assert(real.Ancestors(i) == sim[i]->second);
+ }
+ };
+
+ LIMITED_WHILE(provider.remaining_bytes() > 0, 1000) {
+ uint8_t command = provider.ConsumeIntegral<uint8_t>();
+ if (num_tx_sim == 0 || ((command % 3) <= 0 && num_tx_sim < TestBitSet::Size())) {
+ // AddTransaction.
+ auto fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
+ auto size = provider.ConsumeIntegralInRange<int32_t>(1, 0x3fffff);
+ FeeFrac feerate{fee, size};
+ // Apply to DepGraph.
+ auto idx = real.AddTransaction(feerate);
+ // Verify that the returned index is correct.
+ assert(!sim[idx].has_value());
+ for (ClusterIndex i = 0; i < TestBitSet::Size(); ++i) {
+ if (!sim[i].has_value()) {
+ assert(idx == i);
+ break;
+ }
+ }
+ // Update sim.
+ sim[idx] = {feerate, TestBitSet::Singleton(idx)};
+ ++num_tx_sim;
+ continue;
+ }
+ if ((command % 3) <= 1 && num_tx_sim > 0) {
+ // AddDependencies.
+ ClusterIndex child = idx_fn();
+ auto parents = subset_fn();
+ // Apply to DepGraph.
+ real.AddDependencies(parents, child);
+ // Apply to sim.
+ sim[child]->second |= parents;
+ continue;
+ }
+ if (num_tx_sim > 0) {
+ // Remove transactions.
+ auto del = set_fn();
+ // Propagate all ancestry information before deleting anything in the simulation (as
+ // intermediary transactions may be deleted which impact connectivity).
+ anc_update_fn();
+ // Compare the state of the transactions being deleted.
+ for (auto i : del) check_fn(i);
+ // Apply to DepGraph.
+ real.RemoveTransactions(del);
+ // Apply to sim.
+ for (ClusterIndex i = 0; i < sim.size(); ++i) {
+ if (sim[i].has_value()) {
+ if (del[i]) {
+ --num_tx_sim;
+ sim[i] = std::nullopt;
+ } else {
+ sim[i]->second -= del;
+ }
+ }
+ }
+ continue;
+ }
+ // This should be unreachable (one of the 3 above actions should always be possible).
+ assert(false);
+ }
+
+ // Compare the real obtained depgraph against the simulation.
+ anc_update_fn();
+ for (ClusterIndex i = 0; i < sim.size(); ++i) check_fn(i);
+ assert(real.TxCount() == num_tx_sim);
+ // Sanity check the result (which includes round-tripping serialization, if applicable).
+ SanityCheck(real);
+}
+
+FUZZ_TARGET(clusterlin_depgraph_serialization)
+{
+ // Verify that any deserialized depgraph is acyclic and roundtrips to an identical depgraph.
+
+ // Construct a graph by deserializing.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph);
+ } catch (const std::ios_base::failure&) {}
+ SanityCheck(depgraph);
+
+ // Verify the graph is a DAG.
+ assert(IsAcyclic(depgraph));
+}
+
+FUZZ_TARGET(clusterlin_components)
+{
+ // Verify the behavior of DepGraphs's FindConnectedComponent and IsConnected functions.
+
+ // Construct a depgraph.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph);
+ } catch (const std::ios_base::failure&) {}
+
+ TestBitSet todo = depgraph.Positions();
+ while (todo.Any()) {
+ // Find a connected component inside todo.
+ auto component = depgraph.FindConnectedComponent(todo);
+
+ // The component must be a subset of todo and non-empty.
+ assert(component.IsSubsetOf(todo));
+ assert(component.Any());
+
+ // If todo is the entire graph, and the entire graph is connected, then the component must
+ // be the entire graph.
+ if (todo == depgraph.Positions()) {
+ assert((component == todo) == depgraph.IsConnected());
+ }
+
+ // If subset is connected, then component must match subset.
+ assert((component == todo) == depgraph.IsConnected(todo));
+
+ // The component cannot have any ancestors or descendants outside of component but in todo.
+ for (auto i : component) {
+ assert((depgraph.Ancestors(i) & todo).IsSubsetOf(component));
+ assert((depgraph.Descendants(i) & todo).IsSubsetOf(component));
+ }
+
+ // Starting from any component element, we must be able to reach every element.
+ for (auto i : component) {
+ // Start with just i as reachable.
+ TestBitSet reachable = TestBitSet::Singleton(i);
+ // Add in-todo descendants and ancestors to reachable until it does not change anymore.
+ while (true) {
+ TestBitSet new_reachable = reachable;
+ for (auto j : new_reachable) {
+ new_reachable |= depgraph.Ancestors(j) & todo;
+ new_reachable |= depgraph.Descendants(j) & todo;
+ }
+ if (new_reachable == reachable) break;
+ reachable = new_reachable;
+ }
+ // Verify that the result is the entire component.
+ assert(component == reachable);
+ }
+
+ // Construct an arbitrary subset of todo.
+ uint64_t subset_bits{0};
+ try {
+ reader >> VARINT(subset_bits);
+ } catch (const std::ios_base::failure&) {}
+ TestBitSet subset;
+ for (ClusterIndex i : depgraph.Positions()) {
+ if (todo[i]) {
+ if (subset_bits & 1) subset.Set(i);
+ subset_bits >>= 1;
+ }
+ }
+ // Which must be non-empty.
+ if (subset.None()) subset = TestBitSet::Singleton(todo.First());
+ // Remove it from todo.
+ todo -= subset;
+ }
+
+ // No components can be found in an empty subset.
+ assert(depgraph.FindConnectedComponent(todo).None());
+}
+
+FUZZ_TARGET(clusterlin_make_connected)
+{
+ // Verify that MakeConnected makes graphs connected.
+
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph);
+ } catch (const std::ios_base::failure&) {}
+ MakeConnected(depgraph);
+ SanityCheck(depgraph);
+ assert(depgraph.IsConnected());
+}
+
+FUZZ_TARGET(clusterlin_chunking)
+{
+ // Verify the correctness of the ChunkLinearization function.
+
+ // Construct a graph by deserializing.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph);
+ } catch (const std::ios_base::failure&) {}
+
+ // Read a valid linearization for depgraph.
+ auto linearization = ReadLinearization(depgraph, reader);
+
+ // Invoke the chunking function.
+ auto chunking = ChunkLinearization(depgraph, linearization);
+
+ // Verify that chunk feerates are monotonically non-increasing.
+ for (size_t i = 1; i < chunking.size(); ++i) {
+ assert(!(chunking[i] >> chunking[i - 1]));
+ }
+
+ // Naively recompute the chunks (each is the highest-feerate prefix of what remains).
+ auto todo = depgraph.Positions();
+ for (const auto& chunk_feerate : chunking) {
+ assert(todo.Any());
+ SetInfo<TestBitSet> accumulator, best;
+ for (ClusterIndex idx : linearization) {
+ if (todo[idx]) {
+ accumulator.Set(depgraph, idx);
+ if (best.feerate.IsEmpty() || accumulator.feerate >> best.feerate) {
+ best = accumulator;
+ }
+ }
+ }
+ assert(chunk_feerate == best.feerate);
+ assert(best.transactions.IsSubsetOf(todo));
+ todo -= best.transactions;
+ }
+ assert(todo.None());
+}
+
+FUZZ_TARGET(clusterlin_ancestor_finder)
+{
+ // Verify that AncestorCandidateFinder works as expected.
+
+ // Retrieve a depgraph from the fuzz input.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph);
+ } catch (const std::ios_base::failure&) {}
+
+ AncestorCandidateFinder anc_finder(depgraph);
+ auto todo = depgraph.Positions();
+ while (todo.Any()) {
+ // Call the ancestor finder's FindCandidateSet for what remains of the graph.
+ assert(!anc_finder.AllDone());
+ assert(todo.Count() == anc_finder.NumRemaining());
+ auto best_anc = anc_finder.FindCandidateSet();
+ // Sanity check the result.
+ assert(best_anc.transactions.Any());
+ assert(best_anc.transactions.IsSubsetOf(todo));
+ assert(depgraph.FeeRate(best_anc.transactions) == best_anc.feerate);
+ assert(depgraph.IsConnected(best_anc.transactions));
+ // Check that it is topologically valid.
+ for (auto i : best_anc.transactions) {
+ assert((depgraph.Ancestors(i) & todo).IsSubsetOf(best_anc.transactions));
+ }
+
+ // Compute all remaining ancestor sets.
+ std::optional<SetInfo<TestBitSet>> real_best_anc;
+ for (auto i : todo) {
+ SetInfo info(depgraph, todo & depgraph.Ancestors(i));
+ if (!real_best_anc.has_value() || info.feerate > real_best_anc->feerate) {
+ real_best_anc = info;
+ }
+ }
+ // The set returned by anc_finder must equal the real best ancestor sets.
+ assert(real_best_anc.has_value());
+ assert(*real_best_anc == best_anc);
+
+ // Find a topologically valid subset of transactions to remove from the graph.
+ auto del_set = ReadTopologicalSet(depgraph, todo, reader);
+ // If we did not find anything, use best_anc itself, because we should remove something.
+ if (del_set.None()) del_set = best_anc.transactions;
+ todo -= del_set;
+ anc_finder.MarkDone(del_set);
+ }
+ assert(anc_finder.AllDone());
+ assert(anc_finder.NumRemaining() == 0);
+}
+
+static constexpr auto MAX_SIMPLE_ITERATIONS = 300000;
+
+FUZZ_TARGET(clusterlin_search_finder)
+{
+ // Verify that SearchCandidateFinder works as expected by sanity checking the results
+ // and comparing with the results from SimpleCandidateFinder, ExhaustiveCandidateFinder, and
+ // AncestorCandidateFinder.
+
+ // Retrieve an RNG seed, a depgraph, and whether to make it connected, from the fuzz input.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ uint64_t rng_seed{0};
+ uint8_t make_connected{1};
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph) >> rng_seed >> make_connected;
+ } catch (const std::ios_base::failure&) {}
+ // The most complicated graphs are connected ones (other ones just split up). Optionally force
+ // the graph to be connected.
+ if (make_connected) MakeConnected(depgraph);
+
+ // Instantiate ALL the candidate finders.
+ SearchCandidateFinder src_finder(depgraph, rng_seed);
+ SimpleCandidateFinder smp_finder(depgraph);
+ ExhaustiveCandidateFinder exh_finder(depgraph);
+ AncestorCandidateFinder anc_finder(depgraph);
+
+ auto todo = depgraph.Positions();
+ while (todo.Any()) {
+ assert(!src_finder.AllDone());
+ assert(!smp_finder.AllDone());
+ assert(!exh_finder.AllDone());
+ assert(!anc_finder.AllDone());
+ assert(anc_finder.NumRemaining() == todo.Count());
+
+ // For each iteration, read an iteration count limit from the fuzz input.
+ uint64_t max_iterations = 1;
+ try {
+ reader >> VARINT(max_iterations);
+ } catch (const std::ios_base::failure&) {}
+ max_iterations &= 0xfffff;
+
+ // Read an initial subset from the fuzz input.
+ SetInfo init_best(depgraph, ReadTopologicalSet(depgraph, todo, reader));
+
+ // Call the search finder's FindCandidateSet for what remains of the graph.
+ auto [found, iterations_done] = src_finder.FindCandidateSet(max_iterations, init_best);
+
+ // Sanity check the result.
+ assert(iterations_done <= max_iterations);
+ assert(found.transactions.Any());
+ assert(found.transactions.IsSubsetOf(todo));
+ assert(depgraph.FeeRate(found.transactions) == found.feerate);
+ if (!init_best.feerate.IsEmpty()) assert(found.feerate >= init_best.feerate);
+ // Check that it is topologically valid.
+ for (auto i : found.transactions) {
+ assert(found.transactions.IsSupersetOf(depgraph.Ancestors(i) & todo));
+ }
+
+ // At most 2^(N-1) iterations can be required: the maximum number of non-empty topological
+ // subsets a (connected) cluster with N transactions can have. Even when the cluster is no
+ // longer connected after removing certain transactions, this holds, because the connected
+ // components are searched separately.
+ assert(iterations_done <= (uint64_t{1} << (todo.Count() - 1)));
+ // Additionally, test that no more than sqrt(2^N)+1 iterations are required. This is just
+ // an empirical bound that seems to hold, without proof. Still, add a test for it so we
+ // can learn about counterexamples if they exist.
+ if (iterations_done >= 1 && todo.Count() <= 63) {
+ Assume((iterations_done - 1) * (iterations_done - 1) <= uint64_t{1} << todo.Count());
+ }
+
+ // Perform quality checks only if SearchCandidateFinder claims an optimal result.
+ if (iterations_done < max_iterations) {
+ // Optimal sets are always connected.
+ assert(depgraph.IsConnected(found.transactions));
+
+ // Compare with SimpleCandidateFinder.
+ auto [simple, simple_iters] = smp_finder.FindCandidateSet(MAX_SIMPLE_ITERATIONS);
+ assert(found.feerate >= simple.feerate);
+ if (simple_iters < MAX_SIMPLE_ITERATIONS) {
+ assert(found.feerate == simple.feerate);
+ }
+
+ // Compare with AncestorCandidateFinder;
+ auto anc = anc_finder.FindCandidateSet();
+ assert(found.feerate >= anc.feerate);
+
+ // Compare with ExhaustiveCandidateFinder. This quickly gets computationally expensive
+ // for large clusters (O(2^n)), so only do it for sufficiently small ones.
+ if (todo.Count() <= 12) {
+ auto exhaustive = exh_finder.FindCandidateSet();
+ assert(exhaustive.feerate == found.feerate);
+ // Also compare ExhaustiveCandidateFinder with SimpleCandidateFinder (this is
+ // primarily a test for SimpleCandidateFinder's correctness).
+ assert(exhaustive.feerate >= simple.feerate);
+ if (simple_iters < MAX_SIMPLE_ITERATIONS) {
+ assert(exhaustive.feerate == simple.feerate);
+ }
+ }
+ }
+
+ // Find a topologically valid subset of transactions to remove from the graph.
+ auto del_set = ReadTopologicalSet(depgraph, todo, reader);
+ // If we did not find anything, use found itself, because we should remove something.
+ if (del_set.None()) del_set = found.transactions;
+ todo -= del_set;
+ src_finder.MarkDone(del_set);
+ smp_finder.MarkDone(del_set);
+ exh_finder.MarkDone(del_set);
+ anc_finder.MarkDone(del_set);
+ }
+
+ assert(src_finder.AllDone());
+ assert(smp_finder.AllDone());
+ assert(exh_finder.AllDone());
+ assert(anc_finder.AllDone());
+ assert(anc_finder.NumRemaining() == 0);
+}
+
+FUZZ_TARGET(clusterlin_linearization_chunking)
+{
+ // Verify the behavior of LinearizationChunking.
+
+ // Retrieve a depgraph from the fuzz input.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph);
+ } catch (const std::ios_base::failure&) {}
+
+ // Retrieve a topologically-valid subset of depgraph.
+ auto todo = depgraph.Positions();
+ auto subset = SetInfo(depgraph, ReadTopologicalSet(depgraph, todo, reader));
+
+ // Retrieve a valid linearization for depgraph.
+ auto linearization = ReadLinearization(depgraph, reader);
+
+ // Construct a LinearizationChunking object, initially for the whole linearization.
+ LinearizationChunking chunking(depgraph, linearization);
+
+ // Incrementally remove transactions from the chunking object, and check various properties at
+ // every step.
+ while (todo.Any()) {
+ assert(chunking.NumChunksLeft() > 0);
+
+ // Construct linearization with just todo.
+ std::vector<ClusterIndex> linearization_left;
+ for (auto i : linearization) {
+ if (todo[i]) linearization_left.push_back(i);
+ }
+
+ // Compute the chunking for linearization_left.
+ auto chunking_left = ChunkLinearization(depgraph, linearization_left);
+
+ // Verify that it matches the feerates of the chunks of chunking.
+ assert(chunking.NumChunksLeft() == chunking_left.size());
+ for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
+ assert(chunking.GetChunk(i).feerate == chunking_left[i]);
+ }
+
+ // Check consistency of chunking.
+ TestBitSet combined;
+ for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
+ const auto& chunk_info = chunking.GetChunk(i);
+ // Chunks must be non-empty.
+ assert(chunk_info.transactions.Any());
+ // Chunk feerates must be monotonically non-increasing.
+ if (i > 0) assert(!(chunk_info.feerate >> chunking.GetChunk(i - 1).feerate));
+ // Chunks must be a subset of what is left of the linearization.
+ assert(chunk_info.transactions.IsSubsetOf(todo));
+ // Chunks' claimed feerates must match their transactions' aggregate feerate.
+ assert(depgraph.FeeRate(chunk_info.transactions) == chunk_info.feerate);
+ // Chunks must be the highest-feerate remaining prefix.
+ SetInfo<TestBitSet> accumulator, best;
+ for (auto j : linearization) {
+ if (todo[j] && !combined[j]) {
+ accumulator.Set(depgraph, j);
+ if (best.feerate.IsEmpty() || accumulator.feerate > best.feerate) {
+ best = accumulator;
+ }
+ }
+ }
+ assert(best.transactions == chunk_info.transactions);
+ assert(best.feerate == chunk_info.feerate);
+ // Chunks cannot overlap.
+ assert(!chunk_info.transactions.Overlaps(combined));
+ combined |= chunk_info.transactions;
+ // Chunks must be topological.
+ for (auto idx : chunk_info.transactions) {
+ assert((depgraph.Ancestors(idx) & todo).IsSubsetOf(combined));
+ }
+ }
+ assert(combined == todo);
+
+ // Verify the expected properties of LinearizationChunking::IntersectPrefixes:
+ auto intersect = chunking.IntersectPrefixes(subset);
+ // - Intersecting again doesn't change the result.
+ assert(chunking.IntersectPrefixes(intersect) == intersect);
+ // - The intersection is topological.
+ TestBitSet intersect_anc;
+ for (auto idx : intersect.transactions) {
+ intersect_anc |= (depgraph.Ancestors(idx) & todo);
+ }
+ assert(intersect.transactions == intersect_anc);
+ // - The claimed intersection feerate matches its transactions.
+ assert(intersect.feerate == depgraph.FeeRate(intersect.transactions));
+ // - The intersection may only be empty if its input is empty.
+ assert(intersect.transactions.Any() == subset.transactions.Any());
+ // - The intersection feerate must be as high as the input.
+ assert(intersect.feerate >= subset.feerate);
+ // - No non-empty intersection between the intersection and a prefix of the chunks of the
+ // remainder of the linearization may be better than the intersection.
+ TestBitSet prefix;
+ for (ClusterIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
+ prefix |= chunking.GetChunk(i).transactions;
+ auto reintersect = SetInfo(depgraph, prefix & intersect.transactions);
+ if (!reintersect.feerate.IsEmpty()) {
+ assert(reintersect.feerate <= intersect.feerate);
+ }
+ }
+
+ // Find a subset to remove from linearization.
+ auto done = ReadTopologicalSet(depgraph, todo, reader);
+ if (done.None()) {
+ // We need to remove a non-empty subset, so fall back to the unlinearized ancestors of
+ // the first transaction in todo if done is empty.
+ done = depgraph.Ancestors(todo.First()) & todo;
+ }
+ todo -= done;
+ chunking.MarkDone(done);
+ subset = SetInfo(depgraph, subset.transactions - done);
+ }
+
+ assert(chunking.NumChunksLeft() == 0);
+}
+
+FUZZ_TARGET(clusterlin_linearize)
+{
+ // Verify the behavior of Linearize().
+
+ // Retrieve an RNG seed, an iteration count, a depgraph, and whether to make it connected from
+ // the fuzz input.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ uint64_t rng_seed{0};
+ uint64_t iter_count{0};
+ uint8_t make_connected{1};
+ try {
+ reader >> VARINT(iter_count) >> Using<DepGraphFormatter>(depgraph) >> rng_seed >> make_connected;
+ } catch (const std::ios_base::failure&) {}
+ // The most complicated graphs are connected ones (other ones just split up). Optionally force
+ // the graph to be connected.
+ if (make_connected) MakeConnected(depgraph);
+
+ // Optionally construct an old linearization for it.
+ std::vector<ClusterIndex> old_linearization;
+ {
+ uint8_t have_old_linearization{0};
+ try {
+ reader >> have_old_linearization;
+ } catch(const std::ios_base::failure&) {}
+ if (have_old_linearization & 1) {
+ old_linearization = ReadLinearization(depgraph, reader);
+ SanityCheck(depgraph, old_linearization);
+ }
+ }
+
+ // Invoke Linearize().
+ iter_count &= 0x7ffff;
+ auto [linearization, optimal] = Linearize(depgraph, iter_count, rng_seed, old_linearization);
+ SanityCheck(depgraph, linearization);
+ auto chunking = ChunkLinearization(depgraph, linearization);
+
+ // Linearization must always be as good as the old one, if provided.
+ if (!old_linearization.empty()) {
+ auto old_chunking = ChunkLinearization(depgraph, old_linearization);
+ auto cmp = CompareChunks(chunking, old_chunking);
+ assert(cmp >= 0);
+ }
+
+ // If the iteration count is sufficiently high, an optimal linearization must be found.
+ // Each linearization step can use up to 2^(k-1) iterations, with steps k=1..n. That sum is
+ // 2^n - 1.
+ const uint64_t n = depgraph.TxCount();
+ if (n <= 19 && iter_count > (uint64_t{1} << n)) {
+ assert(optimal);
+ }
+ // Additionally, if the assumption of sqrt(2^k)+1 iterations per step holds, plus ceil(k/4)
+ // start-up cost per step, plus ceil(n^2/64) start-up cost overall, we can compute the upper
+ // bound for a whole linearization (summing for k=1..n) using the Python expression
+ // [sum((k+3)//4 + int(math.sqrt(2**k)) + 1 for k in range(1, n + 1)) + (n**2 + 63) // 64 for n in range(0, 35)]:
+ static constexpr uint64_t MAX_OPTIMAL_ITERS[] = {
+ 0, 4, 8, 12, 18, 26, 37, 51, 70, 97, 133, 182, 251, 346, 480, 666, 927, 1296, 1815, 2545,
+ 3576, 5031, 7087, 9991, 14094, 19895, 28096, 39690, 56083, 79263, 112041, 158391, 223936,
+ 316629, 447712
+ };
+ if (n < std::size(MAX_OPTIMAL_ITERS) && iter_count >= MAX_OPTIMAL_ITERS[n]) {
+ Assume(optimal);
+ }
+
+ // If Linearize claims optimal result, run quality tests.
+ if (optimal) {
+ // It must be as good as SimpleLinearize.
+ auto [simple_linearization, simple_optimal] = SimpleLinearize(depgraph, MAX_SIMPLE_ITERATIONS);
+ SanityCheck(depgraph, simple_linearization);
+ auto simple_chunking = ChunkLinearization(depgraph, simple_linearization);
+ auto cmp = CompareChunks(chunking, simple_chunking);
+ assert(cmp >= 0);
+ // If SimpleLinearize finds the optimal result too, they must be equal (if not,
+ // SimpleLinearize is broken).
+ if (simple_optimal) assert(cmp == 0);
+
+ // Only for very small clusters, test every topologically-valid permutation.
+ if (depgraph.TxCount() <= 7) {
+ std::vector<ClusterIndex> perm_linearization;
+ for (ClusterIndex i : depgraph.Positions()) perm_linearization.push_back(i);
+ // Iterate over all valid permutations.
+ do {
+ // Determine whether perm_linearization is topological.
+ TestBitSet perm_done;
+ bool perm_is_topo{true};
+ for (auto i : perm_linearization) {
+ perm_done.Set(i);
+ if (!depgraph.Ancestors(i).IsSubsetOf(perm_done)) {
+ perm_is_topo = false;
+ break;
+ }
+ }
+ // If so, verify that the obtained linearization is as good as the permutation.
+ if (perm_is_topo) {
+ auto perm_chunking = ChunkLinearization(depgraph, perm_linearization);
+ auto cmp = CompareChunks(chunking, perm_chunking);
+ assert(cmp >= 0);
+ }
+ } while(std::next_permutation(perm_linearization.begin(), perm_linearization.end()));
+ }
+ }
+}
+
+FUZZ_TARGET(clusterlin_postlinearize)
+{
+ // Verify expected properties of PostLinearize() on arbitrary linearizations.
+
+ // Retrieve a depgraph from the fuzz input.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph);
+ } catch (const std::ios_base::failure&) {}
+
+ // Retrieve a linearization from the fuzz input.
+ std::vector<ClusterIndex> linearization;
+ linearization = ReadLinearization(depgraph, reader);
+ SanityCheck(depgraph, linearization);
+
+ // Produce a post-processed version.
+ auto post_linearization = linearization;
+ PostLinearize(depgraph, post_linearization);
+ SanityCheck(depgraph, post_linearization);
+
+ // Compare diagrams: post-linearization cannot worsen anywhere.
+ auto chunking = ChunkLinearization(depgraph, linearization);
+ auto post_chunking = ChunkLinearization(depgraph, post_linearization);
+ auto cmp = CompareChunks(post_chunking, chunking);
+ assert(cmp >= 0);
+
+ // Run again, things can keep improving (and never get worse)
+ auto post_post_linearization = post_linearization;
+ PostLinearize(depgraph, post_post_linearization);
+ SanityCheck(depgraph, post_post_linearization);
+ auto post_post_chunking = ChunkLinearization(depgraph, post_post_linearization);
+ cmp = CompareChunks(post_post_chunking, post_chunking);
+ assert(cmp >= 0);
+
+ // The chunks that come out of postlinearizing are always connected.
+ LinearizationChunking linchunking(depgraph, post_linearization);
+ while (linchunking.NumChunksLeft()) {
+ assert(depgraph.IsConnected(linchunking.GetChunk(0).transactions));
+ linchunking.MarkDone(linchunking.GetChunk(0).transactions);
+ }
+}
+
+FUZZ_TARGET(clusterlin_postlinearize_tree)
+{
+ // Verify expected properties of PostLinearize() on linearizations of graphs that form either
+ // an upright or reverse tree structure.
+
+ // Construct a direction, RNG seed, and an arbitrary graph from the fuzz input.
+ SpanReader reader(buffer);
+ uint64_t rng_seed{0};
+ DepGraph<TestBitSet> depgraph_gen;
+ uint8_t direction{0};
+ try {
+ reader >> direction >> rng_seed >> Using<DepGraphFormatter>(depgraph_gen);
+ } catch (const std::ios_base::failure&) {}
+
+ // Now construct a new graph, copying the nodes, but leaving only the first parent (even
+ // direction) or the first child (odd direction).
+ DepGraph<TestBitSet> depgraph_tree;
+ for (ClusterIndex i = 0; i < depgraph_gen.PositionRange(); ++i) {
+ if (depgraph_gen.Positions()[i]) {
+ depgraph_tree.AddTransaction(depgraph_gen.FeeRate(i));
+ } else {
+ // For holes, add a dummy transaction which is deleted below, so that non-hole
+ // transactions retain their position.
+ depgraph_tree.AddTransaction(FeeFrac{});
+ }
+ }
+ depgraph_tree.RemoveTransactions(TestBitSet::Fill(depgraph_gen.PositionRange()) - depgraph_gen.Positions());
+
+ if (direction & 1) {
+ for (ClusterIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
+ auto children = depgraph_gen.GetReducedChildren(i);
+ if (children.Any()) {
+ depgraph_tree.AddDependencies(TestBitSet::Singleton(i), children.First());
+ }
+ }
+ } else {
+ for (ClusterIndex i = 0; i < depgraph_gen.TxCount(); ++i) {
+ auto parents = depgraph_gen.GetReducedParents(i);
+ if (parents.Any()) {
+ depgraph_tree.AddDependencies(TestBitSet::Singleton(parents.First()), i);
+ }
+ }
+ }
+
+ // Retrieve a linearization from the fuzz input.
+ std::vector<ClusterIndex> linearization;
+ linearization = ReadLinearization(depgraph_tree, reader);
+ SanityCheck(depgraph_tree, linearization);
+
+ // Produce a postlinearized version.
+ auto post_linearization = linearization;
+ PostLinearize(depgraph_tree, post_linearization);
+ SanityCheck(depgraph_tree, post_linearization);
+
+ // Compare diagrams.
+ auto chunking = ChunkLinearization(depgraph_tree, linearization);
+ auto post_chunking = ChunkLinearization(depgraph_tree, post_linearization);
+ auto cmp = CompareChunks(post_chunking, chunking);
+ assert(cmp >= 0);
+
+ // Verify that post-linearizing again does not change the diagram. The result must be identical
+ // as post_linearization ought to be optimal already with a tree-structured graph.
+ auto post_post_linearization = post_linearization;
+ PostLinearize(depgraph_tree, post_linearization);
+ SanityCheck(depgraph_tree, post_linearization);
+ auto post_post_chunking = ChunkLinearization(depgraph_tree, post_post_linearization);
+ auto cmp_post = CompareChunks(post_post_chunking, post_chunking);
+ assert(cmp_post == 0);
+
+ // Try to find an even better linearization directly. This must not change the diagram for the
+ // same reason.
+ auto [opt_linearization, _optimal] = Linearize(depgraph_tree, 100000, rng_seed, post_linearization);
+ auto opt_chunking = ChunkLinearization(depgraph_tree, opt_linearization);
+ auto cmp_opt = CompareChunks(opt_chunking, post_chunking);
+ assert(cmp_opt == 0);
+}
+
+FUZZ_TARGET(clusterlin_postlinearize_moved_leaf)
+{
+ // Verify that taking an existing linearization, and moving a leaf to the back, potentially
+ // increasing its fee, and then post-linearizing, results in something as good as the
+ // original. This guarantees that in an RBF that replaces a transaction with one of the same
+ // size but higher fee, applying the "remove conflicts, append new transaction, postlinearize"
+ // process will never worsen linearization quality.
+
+ // Construct an arbitrary graph and a fee from the fuzz input.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ int32_t fee_inc{0};
+ try {
+ uint64_t fee_inc_code;
+ reader >> Using<DepGraphFormatter>(depgraph) >> VARINT(fee_inc_code);
+ fee_inc = fee_inc_code & 0x3ffff;
+ } catch (const std::ios_base::failure&) {}
+ if (depgraph.TxCount() == 0) return;
+
+ // Retrieve two linearizations from the fuzz input.
+ auto lin = ReadLinearization(depgraph, reader);
+ auto lin_leaf = ReadLinearization(depgraph, reader);
+
+ // Construct a linearization identical to lin, but with the tail end of lin_leaf moved to the
+ // back.
+ std::vector<ClusterIndex> lin_moved;
+ for (auto i : lin) {
+ if (i != lin_leaf.back()) lin_moved.push_back(i);
+ }
+ lin_moved.push_back(lin_leaf.back());
+
+ // Postlinearize lin_moved.
+ PostLinearize(depgraph, lin_moved);
+ SanityCheck(depgraph, lin_moved);
+
+ // Compare diagrams (applying the fee delta after computing the old one).
+ auto old_chunking = ChunkLinearization(depgraph, lin);
+ depgraph.FeeRate(lin_leaf.back()).fee += fee_inc;
+ auto new_chunking = ChunkLinearization(depgraph, lin_moved);
+ auto cmp = CompareChunks(new_chunking, old_chunking);
+ assert(cmp >= 0);
+}
+
+FUZZ_TARGET(clusterlin_merge)
+{
+ // Construct an arbitrary graph from the fuzz input.
+ SpanReader reader(buffer);
+ DepGraph<TestBitSet> depgraph;
+ try {
+ reader >> Using<DepGraphFormatter>(depgraph);
+ } catch (const std::ios_base::failure&) {}
+
+ // Retrieve two linearizations from the fuzz input.
+ auto lin1 = ReadLinearization(depgraph, reader);
+ auto lin2 = ReadLinearization(depgraph, reader);
+
+ // Merge the two.
+ auto lin_merged = MergeLinearizations(depgraph, lin1, lin2);
+
+ // Compute chunkings and compare.
+ auto chunking1 = ChunkLinearization(depgraph, lin1);
+ auto chunking2 = ChunkLinearization(depgraph, lin2);
+ auto chunking_merged = ChunkLinearization(depgraph, lin_merged);
+ auto cmp1 = CompareChunks(chunking_merged, chunking1);
+ assert(cmp1 >= 0);
+ auto cmp2 = CompareChunks(chunking_merged, chunking2);
+ assert(cmp2 >= 0);
+}