aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/src/field_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/secp256k1/src/field_impl.h')
-rw-r--r--src/secp256k1/src/field_impl.h190
1 files changed, 5 insertions, 185 deletions
diff --git a/src/secp256k1/src/field_impl.h b/src/secp256k1/src/field_impl.h
index 18e4d2f30e..374284a1f4 100644
--- a/src/secp256k1/src/field_impl.h
+++ b/src/secp256k1/src/field_impl.h
@@ -1,8 +1,8 @@
-/**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
+/***********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
+ ***********************************************************************/
#ifndef SECP256K1_FIELD_IMPL_H
#define SECP256K1_FIELD_IMPL_H
@@ -12,7 +12,6 @@
#endif
#include "util.h"
-#include "num.h"
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52_impl.h"
@@ -136,185 +135,6 @@ static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
return secp256k1_fe_equal(&t1, a);
}
-static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
- secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
- int j;
-
- /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
- * { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
- * [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
- */
-
- secp256k1_fe_sqr(&x2, a);
- secp256k1_fe_mul(&x2, &x2, a);
-
- secp256k1_fe_sqr(&x3, &x2);
- secp256k1_fe_mul(&x3, &x3, a);
-
- x6 = x3;
- for (j=0; j<3; j++) {
- secp256k1_fe_sqr(&x6, &x6);
- }
- secp256k1_fe_mul(&x6, &x6, &x3);
-
- x9 = x6;
- for (j=0; j<3; j++) {
- secp256k1_fe_sqr(&x9, &x9);
- }
- secp256k1_fe_mul(&x9, &x9, &x3);
-
- x11 = x9;
- for (j=0; j<2; j++) {
- secp256k1_fe_sqr(&x11, &x11);
- }
- secp256k1_fe_mul(&x11, &x11, &x2);
-
- x22 = x11;
- for (j=0; j<11; j++) {
- secp256k1_fe_sqr(&x22, &x22);
- }
- secp256k1_fe_mul(&x22, &x22, &x11);
-
- x44 = x22;
- for (j=0; j<22; j++) {
- secp256k1_fe_sqr(&x44, &x44);
- }
- secp256k1_fe_mul(&x44, &x44, &x22);
-
- x88 = x44;
- for (j=0; j<44; j++) {
- secp256k1_fe_sqr(&x88, &x88);
- }
- secp256k1_fe_mul(&x88, &x88, &x44);
-
- x176 = x88;
- for (j=0; j<88; j++) {
- secp256k1_fe_sqr(&x176, &x176);
- }
- secp256k1_fe_mul(&x176, &x176, &x88);
-
- x220 = x176;
- for (j=0; j<44; j++) {
- secp256k1_fe_sqr(&x220, &x220);
- }
- secp256k1_fe_mul(&x220, &x220, &x44);
-
- x223 = x220;
- for (j=0; j<3; j++) {
- secp256k1_fe_sqr(&x223, &x223);
- }
- secp256k1_fe_mul(&x223, &x223, &x3);
-
- /* The final result is then assembled using a sliding window over the blocks. */
-
- t1 = x223;
- for (j=0; j<23; j++) {
- secp256k1_fe_sqr(&t1, &t1);
- }
- secp256k1_fe_mul(&t1, &t1, &x22);
- for (j=0; j<5; j++) {
- secp256k1_fe_sqr(&t1, &t1);
- }
- secp256k1_fe_mul(&t1, &t1, a);
- for (j=0; j<3; j++) {
- secp256k1_fe_sqr(&t1, &t1);
- }
- secp256k1_fe_mul(&t1, &t1, &x2);
- for (j=0; j<2; j++) {
- secp256k1_fe_sqr(&t1, &t1);
- }
- secp256k1_fe_mul(r, a, &t1);
-}
-
-static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
-#if defined(USE_FIELD_INV_BUILTIN)
- secp256k1_fe_inv(r, a);
-#elif defined(USE_FIELD_INV_NUM)
- secp256k1_num n, m;
- static const secp256k1_fe negone = SECP256K1_FE_CONST(
- 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
- 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
- );
- /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
- static const unsigned char prime[32] = {
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
- 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
- };
- unsigned char b[32];
- int res;
- secp256k1_fe c = *a;
- secp256k1_fe_normalize_var(&c);
- secp256k1_fe_get_b32(b, &c);
- secp256k1_num_set_bin(&n, b, 32);
- secp256k1_num_set_bin(&m, prime, 32);
- secp256k1_num_mod_inverse(&n, &n, &m);
- secp256k1_num_get_bin(b, 32, &n);
- res = secp256k1_fe_set_b32(r, b);
- (void)res;
- VERIFY_CHECK(res);
- /* Verify the result is the (unique) valid inverse using non-GMP code. */
- secp256k1_fe_mul(&c, &c, r);
- secp256k1_fe_add(&c, &negone);
- CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
-#else
-#error "Please select field inverse implementation"
-#endif
-}
-
-static void secp256k1_fe_inv_all_var(secp256k1_fe *r, const secp256k1_fe *a, size_t len) {
- secp256k1_fe u;
- size_t i;
- if (len < 1) {
- return;
- }
-
- VERIFY_CHECK((r + len <= a) || (a + len <= r));
-
- r[0] = a[0];
-
- i = 0;
- while (++i < len) {
- secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
- }
-
- secp256k1_fe_inv_var(&u, &r[--i]);
-
- while (i > 0) {
- size_t j = i--;
- secp256k1_fe_mul(&r[j], &r[i], &u);
- secp256k1_fe_mul(&u, &u, &a[j]);
- }
-
- r[0] = u;
-}
-
-static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
-#ifndef USE_NUM_NONE
- unsigned char b[32];
- secp256k1_num n;
- secp256k1_num m;
- /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
- static const unsigned char prime[32] = {
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
- 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
- 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
- };
-
- secp256k1_fe c = *a;
- secp256k1_fe_normalize_var(&c);
- secp256k1_fe_get_b32(b, &c);
- secp256k1_num_set_bin(&n, b, 32);
- secp256k1_num_set_bin(&m, prime, 32);
- return secp256k1_num_jacobi(&n, &m) >= 0;
-#else
- secp256k1_fe r;
- return secp256k1_fe_sqrt(&r, a);
-#endif
-}
-
static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
#endif /* SECP256K1_FIELD_IMPL_H */