aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/examples/ellswift.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/secp256k1/examples/ellswift.c')
-rw-r--r--src/secp256k1/examples/ellswift.c123
1 files changed, 123 insertions, 0 deletions
diff --git a/src/secp256k1/examples/ellswift.c b/src/secp256k1/examples/ellswift.c
new file mode 100644
index 0000000000..52be7eebfb
--- /dev/null
+++ b/src/secp256k1/examples/ellswift.c
@@ -0,0 +1,123 @@
+/*************************************************************************
+ * Written in 2024 by Sebastian Falbesoner *
+ * To the extent possible under law, the author(s) have dedicated all *
+ * copyright and related and neighboring rights to the software in this *
+ * file to the public domain worldwide. This software is distributed *
+ * without any warranty. For the CC0 Public Domain Dedication, see *
+ * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
+ *************************************************************************/
+
+/** This file demonstrates how to use the ElligatorSwift module to perform
+ * a key exchange according to BIP 324. Additionally, see the documentation
+ * in include/secp256k1_ellswift.h and doc/ellswift.md.
+ */
+
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+
+#include <secp256k1.h>
+#include <secp256k1_ellswift.h>
+
+#include "examples_util.h"
+
+int main(void) {
+ secp256k1_context* ctx;
+ unsigned char randomize[32];
+ unsigned char auxrand1[32];
+ unsigned char auxrand2[32];
+ unsigned char seckey1[32];
+ unsigned char seckey2[32];
+ unsigned char ellswift_pubkey1[64];
+ unsigned char ellswift_pubkey2[64];
+ unsigned char shared_secret1[32];
+ unsigned char shared_secret2[32];
+ int return_val;
+
+ /* Create a secp256k1 context */
+ ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
+ if (!fill_random(randomize, sizeof(randomize))) {
+ printf("Failed to generate randomness\n");
+ return 1;
+ }
+ /* Randomizing the context is recommended to protect against side-channel
+ * leakage. See `secp256k1_context_randomize` in secp256k1.h for more
+ * information about it. This should never fail. */
+ return_val = secp256k1_context_randomize(ctx, randomize);
+ assert(return_val);
+
+ /*** Generate secret keys ***/
+
+ /* If the secret key is zero or out of range (bigger than secp256k1's
+ * order), we try to sample a new key. Note that the probability of this
+ * happening is negligible. */
+ while (1) {
+ if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) {
+ printf("Failed to generate randomness\n");
+ return 1;
+ }
+ if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) {
+ break;
+ }
+ }
+
+ /* Generate ElligatorSwift public keys. This should never fail with valid context and
+ verified secret keys. Note that providing additional randomness (fourth parameter) is
+ optional, but recommended. */
+ if (!fill_random(auxrand1, sizeof(auxrand1)) || !fill_random(auxrand2, sizeof(auxrand2))) {
+ printf("Failed to generate randomness\n");
+ return 1;
+ }
+ return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey1, seckey1, auxrand1);
+ assert(return_val);
+ return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey2, seckey2, auxrand2);
+ assert(return_val);
+
+ /*** Create the shared secret on each side ***/
+
+ /* Perform x-only ECDH with seckey1 and ellswift_pubkey2. Should never fail
+ * with a verified seckey and valid pubkey. Note that both parties pass both
+ * EllSwift pubkeys in the same order; the pubkey of the calling party is
+ * determined by the "party" boolean (sixth parameter). */
+ return_val = secp256k1_ellswift_xdh(ctx, shared_secret1, ellswift_pubkey1, ellswift_pubkey2,
+ seckey1, 0, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
+ assert(return_val);
+
+ /* Perform x-only ECDH with seckey2 and ellswift_pubkey1. Should never fail
+ * with a verified seckey and valid pubkey. */
+ return_val = secp256k1_ellswift_xdh(ctx, shared_secret2, ellswift_pubkey1, ellswift_pubkey2,
+ seckey2, 1, secp256k1_ellswift_xdh_hash_function_bip324, NULL);
+ assert(return_val);
+
+ /* Both parties should end up with the same shared secret */
+ return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1));
+ assert(return_val == 0);
+
+ printf( " Secret Key1: ");
+ print_hex(seckey1, sizeof(seckey1));
+ printf( "EllSwift Pubkey1: ");
+ print_hex(ellswift_pubkey1, sizeof(ellswift_pubkey1));
+ printf("\n Secret Key2: ");
+ print_hex(seckey2, sizeof(seckey2));
+ printf( "EllSwift Pubkey2: ");
+ print_hex(ellswift_pubkey2, sizeof(ellswift_pubkey2));
+ printf("\n Shared Secret: ");
+ print_hex(shared_secret1, sizeof(shared_secret1));
+
+ /* This will clear everything from the context and free the memory */
+ secp256k1_context_destroy(ctx);
+
+ /* It's best practice to try to clear secrets from memory after using them.
+ * This is done because some bugs can allow an attacker to leak memory, for
+ * example through "out of bounds" array access (see Heartbleed), or the OS
+ * swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
+ *
+ * Here we are preventing these writes from being optimized out, as any good compiler
+ * will remove any writes that aren't used. */
+ secure_erase(seckey1, sizeof(seckey1));
+ secure_erase(seckey2, sizeof(seckey2));
+ secure_erase(shared_secret1, sizeof(shared_secret1));
+ secure_erase(shared_secret2, sizeof(shared_secret2));
+
+ return 0;
+}