diff options
Diffstat (limited to 'src/secp256k1/examples/ellswift.c')
-rw-r--r-- | src/secp256k1/examples/ellswift.c | 123 |
1 files changed, 123 insertions, 0 deletions
diff --git a/src/secp256k1/examples/ellswift.c b/src/secp256k1/examples/ellswift.c new file mode 100644 index 0000000000..52be7eebfb --- /dev/null +++ b/src/secp256k1/examples/ellswift.c @@ -0,0 +1,123 @@ +/************************************************************************* + * Written in 2024 by Sebastian Falbesoner * + * To the extent possible under law, the author(s) have dedicated all * + * copyright and related and neighboring rights to the software in this * + * file to the public domain worldwide. This software is distributed * + * without any warranty. For the CC0 Public Domain Dedication, see * + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * + *************************************************************************/ + +/** This file demonstrates how to use the ElligatorSwift module to perform + * a key exchange according to BIP 324. Additionally, see the documentation + * in include/secp256k1_ellswift.h and doc/ellswift.md. + */ + +#include <stdio.h> +#include <assert.h> +#include <string.h> + +#include <secp256k1.h> +#include <secp256k1_ellswift.h> + +#include "examples_util.h" + +int main(void) { + secp256k1_context* ctx; + unsigned char randomize[32]; + unsigned char auxrand1[32]; + unsigned char auxrand2[32]; + unsigned char seckey1[32]; + unsigned char seckey2[32]; + unsigned char ellswift_pubkey1[64]; + unsigned char ellswift_pubkey2[64]; + unsigned char shared_secret1[32]; + unsigned char shared_secret2[32]; + int return_val; + + /* Create a secp256k1 context */ + ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); + if (!fill_random(randomize, sizeof(randomize))) { + printf("Failed to generate randomness\n"); + return 1; + } + /* Randomizing the context is recommended to protect against side-channel + * leakage. See `secp256k1_context_randomize` in secp256k1.h for more + * information about it. This should never fail. */ + return_val = secp256k1_context_randomize(ctx, randomize); + assert(return_val); + + /*** Generate secret keys ***/ + + /* If the secret key is zero or out of range (bigger than secp256k1's + * order), we try to sample a new key. Note that the probability of this + * happening is negligible. */ + while (1) { + if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) { + printf("Failed to generate randomness\n"); + return 1; + } + if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) { + break; + } + } + + /* Generate ElligatorSwift public keys. This should never fail with valid context and + verified secret keys. Note that providing additional randomness (fourth parameter) is + optional, but recommended. */ + if (!fill_random(auxrand1, sizeof(auxrand1)) || !fill_random(auxrand2, sizeof(auxrand2))) { + printf("Failed to generate randomness\n"); + return 1; + } + return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey1, seckey1, auxrand1); + assert(return_val); + return_val = secp256k1_ellswift_create(ctx, ellswift_pubkey2, seckey2, auxrand2); + assert(return_val); + + /*** Create the shared secret on each side ***/ + + /* Perform x-only ECDH with seckey1 and ellswift_pubkey2. Should never fail + * with a verified seckey and valid pubkey. Note that both parties pass both + * EllSwift pubkeys in the same order; the pubkey of the calling party is + * determined by the "party" boolean (sixth parameter). */ + return_val = secp256k1_ellswift_xdh(ctx, shared_secret1, ellswift_pubkey1, ellswift_pubkey2, + seckey1, 0, secp256k1_ellswift_xdh_hash_function_bip324, NULL); + assert(return_val); + + /* Perform x-only ECDH with seckey2 and ellswift_pubkey1. Should never fail + * with a verified seckey and valid pubkey. */ + return_val = secp256k1_ellswift_xdh(ctx, shared_secret2, ellswift_pubkey1, ellswift_pubkey2, + seckey2, 1, secp256k1_ellswift_xdh_hash_function_bip324, NULL); + assert(return_val); + + /* Both parties should end up with the same shared secret */ + return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1)); + assert(return_val == 0); + + printf( " Secret Key1: "); + print_hex(seckey1, sizeof(seckey1)); + printf( "EllSwift Pubkey1: "); + print_hex(ellswift_pubkey1, sizeof(ellswift_pubkey1)); + printf("\n Secret Key2: "); + print_hex(seckey2, sizeof(seckey2)); + printf( "EllSwift Pubkey2: "); + print_hex(ellswift_pubkey2, sizeof(ellswift_pubkey2)); + printf("\n Shared Secret: "); + print_hex(shared_secret1, sizeof(shared_secret1)); + + /* This will clear everything from the context and free the memory */ + secp256k1_context_destroy(ctx); + + /* It's best practice to try to clear secrets from memory after using them. + * This is done because some bugs can allow an attacker to leak memory, for + * example through "out of bounds" array access (see Heartbleed), or the OS + * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. + * + * Here we are preventing these writes from being optimized out, as any good compiler + * will remove any writes that aren't used. */ + secure_erase(seckey1, sizeof(seckey1)); + secure_erase(seckey2, sizeof(seckey2)); + secure_erase(shared_secret1, sizeof(shared_secret1)); + secure_erase(shared_secret2, sizeof(shared_secret2)); + + return 0; +} |