diff options
Diffstat (limited to 'src/modules')
-rw-r--r-- | src/modules/ecdh/tests_impl.h | 4 | ||||
-rw-r--r-- | src/modules/extrakeys/Makefile.am.include | 1 | ||||
-rw-r--r-- | src/modules/extrakeys/main_impl.h | 5 | ||||
-rw-r--r-- | src/modules/extrakeys/tests_exhaustive_impl.h | 68 | ||||
-rw-r--r-- | src/modules/extrakeys/tests_impl.h | 96 | ||||
-rw-r--r-- | src/modules/recovery/Makefile.am.include | 1 | ||||
-rw-r--r-- | src/modules/recovery/tests_exhaustive_impl.h | 149 | ||||
-rw-r--r-- | src/modules/recovery/tests_impl.h | 10 | ||||
-rw-r--r-- | src/modules/schnorrsig/Makefile.am.include | 1 | ||||
-rw-r--r-- | src/modules/schnorrsig/main_impl.h | 39 | ||||
-rw-r--r-- | src/modules/schnorrsig/tests_exhaustive_impl.h | 206 | ||||
-rw-r--r-- | src/modules/schnorrsig/tests_impl.h | 52 |
12 files changed, 531 insertions, 101 deletions
diff --git a/src/modules/ecdh/tests_impl.h b/src/modules/ecdh/tests_impl.h index fe26e8fb69..e8d2aeab9a 100644 --- a/src/modules/ecdh/tests_impl.h +++ b/src/modules/ecdh/tests_impl.h @@ -80,7 +80,7 @@ void test_ecdh_generator_basepoint(void) { /* compute "explicitly" */ CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_UNCOMPRESSED) == 1); /* compare */ - CHECK(memcmp(output_ecdh, point_ser, 65) == 0); + CHECK(secp256k1_memcmp_var(output_ecdh, point_ser, 65) == 0); /* compute using ECDH function with default hash function */ CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32, NULL, NULL) == 1); @@ -90,7 +90,7 @@ void test_ecdh_generator_basepoint(void) { secp256k1_sha256_write(&sha, point_ser, point_ser_len); secp256k1_sha256_finalize(&sha, output_ser); /* compare */ - CHECK(memcmp(output_ecdh, output_ser, 32) == 0); + CHECK(secp256k1_memcmp_var(output_ecdh, output_ser, 32) == 0); } } diff --git a/src/modules/extrakeys/Makefile.am.include b/src/modules/extrakeys/Makefile.am.include index 8515f92e7a..0d901ec1f4 100644 --- a/src/modules/extrakeys/Makefile.am.include +++ b/src/modules/extrakeys/Makefile.am.include @@ -1,3 +1,4 @@ include_HEADERS += include/secp256k1_extrakeys.h noinst_HEADERS += src/modules/extrakeys/tests_impl.h +noinst_HEADERS += src/modules/extrakeys/tests_exhaustive_impl.h noinst_HEADERS += src/modules/extrakeys/main_impl.h diff --git a/src/modules/extrakeys/main_impl.h b/src/modules/extrakeys/main_impl.h index d319215355..5378d2f301 100644 --- a/src/modules/extrakeys/main_impl.h +++ b/src/modules/extrakeys/main_impl.h @@ -33,6 +33,9 @@ int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_p if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) { return 0; } + if (!secp256k1_ge_is_in_correct_subgroup(&pk)) { + return 0; + } secp256k1_xonly_pubkey_save(pubkey, &pk); return 1; } @@ -121,7 +124,7 @@ int secp256k1_xonly_pubkey_tweak_add_check(const secp256k1_context* ctx, const u secp256k1_fe_normalize_var(&pk.y); secp256k1_fe_get_b32(pk_expected32, &pk.x); - return memcmp(&pk_expected32, tweaked_pubkey32, 32) == 0 + return secp256k1_memcmp_var(&pk_expected32, tweaked_pubkey32, 32) == 0 && secp256k1_fe_is_odd(&pk.y) == tweaked_pk_parity; } diff --git a/src/modules/extrakeys/tests_exhaustive_impl.h b/src/modules/extrakeys/tests_exhaustive_impl.h new file mode 100644 index 0000000000..0e29bc6b09 --- /dev/null +++ b/src/modules/extrakeys/tests_exhaustive_impl.h @@ -0,0 +1,68 @@ +/********************************************************************** + * Copyright (c) 2020 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_ +#define _SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_ + +#include "src/modules/extrakeys/main_impl.h" +#include "include/secp256k1_extrakeys.h" + +static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge* group) { + secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1]; + secp256k1_pubkey pubkey[EXHAUSTIVE_TEST_ORDER - 1]; + secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1]; + int parities[EXHAUSTIVE_TEST_ORDER - 1]; + unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32]; + int i; + + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { + secp256k1_fe fe; + secp256k1_scalar scalar_i; + unsigned char buf[33]; + int parity; + + secp256k1_scalar_set_int(&scalar_i, i); + secp256k1_scalar_get_b32(buf, &scalar_i); + + /* Construct pubkey and keypair. */ + CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf)); + CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey[i - 1], buf)); + + /* Construct serialized xonly_pubkey from keypair. */ + CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parities[i - 1], &keypair[i - 1])); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1])); + + /* Parse the xonly_pubkey back and verify it matches the previously serialized value. */ + CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pubkey[i - 1], xonly_pubkey_bytes[i - 1])); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1])); + CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0); + + /* Construct the xonly_pubkey from the pubkey, and verify it matches the same. */ + CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pubkey[i - 1], &parity, &pubkey[i - 1])); + CHECK(parity == parities[i - 1]); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf, &xonly_pubkey[i - 1])); + CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], buf, 32) == 0); + + /* Compare the xonly_pubkey bytes against the precomputed group. */ + secp256k1_fe_set_b32(&fe, xonly_pubkey_bytes[i - 1]); + CHECK(secp256k1_fe_equal_var(&fe, &group[i].x)); + + /* Check the parity against the precomputed group. */ + fe = group[i].y; + secp256k1_fe_normalize_var(&fe); + CHECK(secp256k1_fe_is_odd(&fe) == parities[i - 1]); + + /* Verify that the higher half is identical to the lower half mirrored. */ + if (i > EXHAUSTIVE_TEST_ORDER / 2) { + CHECK(secp256k1_memcmp_var(xonly_pubkey_bytes[i - 1], xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - i - 1], 32) == 0); + CHECK(parities[i - 1] == 1 - parities[EXHAUSTIVE_TEST_ORDER - i - 1]); + } + } + + /* TODO: keypair/xonly_pubkey tweak tests */ +} + +#endif diff --git a/src/modules/extrakeys/tests_impl.h b/src/modules/extrakeys/tests_impl.h index fc9d40eda1..5ee135849e 100644 --- a/src/modules/extrakeys/tests_impl.h +++ b/src/modules/extrakeys/tests_impl.h @@ -35,9 +35,9 @@ void test_xonly_pubkey(void) { secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount); secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); - secp256k1_rand256(sk); + secp256k1_testrand256(sk); memset(ones32, 0xFF, 32); - secp256k1_rand256(xy_sk); + secp256k1_testrand256(xy_sk); CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1); CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1); @@ -60,7 +60,7 @@ void test_xonly_pubkey(void) { sk[0] = 1; CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1); CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1); - CHECK(memcmp(&pk, &xonly_pk, sizeof(pk)) == 0); + CHECK(secp256k1_memcmp_var(&pk, &xonly_pk, sizeof(pk)) == 0); CHECK(pk_parity == 0); /* Choose a secret key such that pubkey and xonly_pubkey are each others @@ -68,7 +68,7 @@ void test_xonly_pubkey(void) { sk[0] = 2; CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1); CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1); - CHECK(memcmp(&xonly_pk, &pk, sizeof(xonly_pk)) != 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, &pk, sizeof(xonly_pk)) != 0); CHECK(pk_parity == 1); secp256k1_pubkey_load(ctx, &pk1, &pk); secp256k1_pubkey_load(ctx, &pk2, (secp256k1_pubkey *) &xonly_pk); @@ -81,7 +81,7 @@ void test_xonly_pubkey(void) { CHECK(secp256k1_xonly_pubkey_serialize(none, NULL, &xonly_pk) == 0); CHECK(ecount == 1); CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, NULL) == 0); - CHECK(memcmp(buf32, zeros64, 32) == 0); + CHECK(secp256k1_memcmp_var(buf32, zeros64, 32) == 0); CHECK(ecount == 2); { /* A pubkey filled with 0s will fail to serialize due to pubkey_load @@ -104,28 +104,28 @@ void test_xonly_pubkey(void) { CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1); CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &xonly_pk) == 1); CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk_tmp, buf32) == 1); - CHECK(memcmp(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0); /* Test parsing invalid field elements */ memset(&xonly_pk, 1, sizeof(xonly_pk)); /* Overflowing field element */ CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, ones32) == 0); - CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); memset(&xonly_pk, 1, sizeof(xonly_pk)); /* There's no point with x-coordinate 0 on secp256k1 */ CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, zeros64) == 0); - CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); /* If a random 32-byte string can not be parsed with ec_pubkey_parse * (because interpreted as X coordinate it does not correspond to a point on * the curve) then xonly_pubkey_parse should fail as well. */ for (i = 0; i < count; i++) { unsigned char rand33[33]; - secp256k1_rand256(&rand33[1]); + secp256k1_testrand256(&rand33[1]); rand33[0] = SECP256K1_TAG_PUBKEY_EVEN; if (!secp256k1_ec_pubkey_parse(ctx, &pk, rand33, 33)) { memset(&xonly_pk, 1, sizeof(xonly_pk)); CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 0); - CHECK(memcmp(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0); } else { CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 1); } @@ -154,8 +154,8 @@ void test_xonly_pubkey_tweak(void) { secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); memset(overflows, 0xff, sizeof(overflows)); - secp256k1_rand256(tweak); - secp256k1_rand256(sk); + secp256k1_testrand256(tweak); + secp256k1_testrand256(sk); CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1); CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1); @@ -170,15 +170,15 @@ void test_xonly_pubkey_tweak(void) { CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, NULL, tweak) == 0); CHECK(ecount == 4); /* NULL internal_xonly_pk zeroes the output_pk */ - CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, NULL) == 0); CHECK(ecount == 5); /* NULL tweak zeroes the output_pk */ - CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); /* Invalid tweak zeroes the output_pk */ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, overflows) == 0); - CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); /* A zero tweak is fine */ CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, zeros64) == 1); @@ -193,16 +193,16 @@ void test_xonly_pubkey_tweak(void) { secp256k1_scalar_get_b32(tweak, &scalar_tweak); CHECK((secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, sk) == 0) || (secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0)); - CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); } /* Invalid pk with a valid tweak */ memset(&internal_xonly_pk, 0, sizeof(internal_xonly_pk)); - secp256k1_rand256(tweak); + secp256k1_testrand256(tweak); ecount = 0; CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0); CHECK(ecount == 1); - CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); secp256k1_context_destroy(none); secp256k1_context_destroy(sign); @@ -228,8 +228,8 @@ void test_xonly_pubkey_tweak_check(void) { secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); memset(overflows, 0xff, sizeof(overflows)); - secp256k1_rand256(tweak); - secp256k1_rand256(sk); + secp256k1_testrand256(tweak); + secp256k1_testrand256(sk); CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1); CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1); @@ -268,7 +268,7 @@ void test_xonly_pubkey_tweak_check(void) { /* Overflowing tweak not allowed */ CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, overflows) == 0); CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, overflows) == 0); - CHECK(memcmp(&output_pk, zeros64, sizeof(output_pk)) == 0); + CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0); CHECK(ecount == 5); secp256k1_context_destroy(none); @@ -287,7 +287,7 @@ void test_xonly_pubkey_tweak_recursive(void) { unsigned char tweak[N_PUBKEYS - 1][32]; int i; - secp256k1_rand256(sk); + secp256k1_testrand256(sk); CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk) == 1); /* Add tweaks */ for (i = 0; i < N_PUBKEYS - 1; i++) { @@ -327,51 +327,51 @@ void test_keypair(void) { /* Test keypair_create */ ecount = 0; - secp256k1_rand256(sk); + secp256k1_testrand256(sk); CHECK(secp256k1_keypair_create(none, &keypair, sk) == 0); - CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); CHECK(ecount == 1); CHECK(secp256k1_keypair_create(verify, &keypair, sk) == 0); - CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); CHECK(ecount == 2); CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1); CHECK(secp256k1_keypair_create(sign, NULL, sk) == 0); CHECK(ecount == 3); CHECK(secp256k1_keypair_create(sign, &keypair, NULL) == 0); - CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); CHECK(ecount == 4); /* Invalid secret key */ CHECK(secp256k1_keypair_create(sign, &keypair, zeros96) == 0); - CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); CHECK(secp256k1_keypair_create(sign, &keypair, overflows) == 0); - CHECK(memcmp(zeros96, &keypair, sizeof(keypair)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0); /* Test keypair_pub */ ecount = 0; - secp256k1_rand256(sk); + secp256k1_testrand256(sk); CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1); CHECK(secp256k1_keypair_pub(none, NULL, &keypair) == 0); CHECK(ecount == 1); CHECK(secp256k1_keypair_pub(none, &pk, NULL) == 0); CHECK(ecount == 2); - CHECK(memcmp(zeros96, &pk, sizeof(pk)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0); /* Using an invalid keypair is fine for keypair_pub */ memset(&keypair, 0, sizeof(keypair)); CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1); - CHECK(memcmp(zeros96, &pk, sizeof(pk)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0); /* keypair holds the same pubkey as pubkey_create */ CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1); CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1); CHECK(secp256k1_keypair_pub(none, &pk_tmp, &keypair) == 1); - CHECK(memcmp(&pk, &pk_tmp, sizeof(pk)) == 0); + CHECK(secp256k1_memcmp_var(&pk, &pk_tmp, sizeof(pk)) == 0); /** Test keypair_xonly_pub **/ ecount = 0; - secp256k1_rand256(sk); + secp256k1_testrand256(sk); CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1); CHECK(secp256k1_keypair_xonly_pub(none, NULL, &pk_parity, &keypair) == 0); @@ -379,13 +379,13 @@ void test_keypair(void) { CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, NULL, &keypair) == 1); CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, NULL) == 0); CHECK(ecount == 2); - CHECK(memcmp(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0); /* Using an invalid keypair will set the xonly_pk to 0 (first reset * xonly_pk). */ CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1); memset(&keypair, 0, sizeof(keypair)); CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 0); - CHECK(memcmp(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0); + CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0); CHECK(ecount == 3); /** keypair holds the same xonly pubkey as pubkey_create **/ @@ -393,7 +393,7 @@ void test_keypair(void) { CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1); CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1); CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk_tmp, &pk_parity_tmp, &keypair) == 1); - CHECK(memcmp(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0); + CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0); CHECK(pk_parity == pk_parity_tmp); secp256k1_context_destroy(none); @@ -414,8 +414,8 @@ void test_keypair_add(void) { secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount); CHECK(sizeof(zeros96) == sizeof(keypair)); - secp256k1_rand256(sk); - secp256k1_rand256(tweak); + secp256k1_testrand256(sk); + secp256k1_testrand256(tweak); memset(overflows, 0xFF, 32); CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); @@ -429,12 +429,12 @@ void test_keypair_add(void) { CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, NULL) == 0); CHECK(ecount == 4); /* This does not set the keypair to zeroes */ - CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) != 0); + CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) != 0); /* Invalid tweak zeroes the keypair */ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, overflows) == 0); - CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0); + CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0); /* A zero tweak is fine */ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); @@ -444,7 +444,7 @@ void test_keypair_add(void) { for (i = 0; i < count; i++) { secp256k1_scalar scalar_tweak; secp256k1_keypair keypair_tmp; - secp256k1_rand256(sk); + secp256k1_testrand256(sk); CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); memcpy(&keypair_tmp, &keypair, sizeof(keypair)); /* Because sk may be negated before adding, we need to try with tweak = @@ -454,17 +454,17 @@ void test_keypair_add(void) { secp256k1_scalar_get_b32(tweak, &scalar_tweak); CHECK((secp256k1_keypair_xonly_tweak_add(ctx, &keypair, sk) == 0) || (secp256k1_keypair_xonly_tweak_add(ctx, &keypair_tmp, tweak) == 0)); - CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0 - || memcmp(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0); + CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0 + || secp256k1_memcmp_var(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0); } /* Invalid keypair with a valid tweak */ memset(&keypair, 0, sizeof(keypair)); - secp256k1_rand256(tweak); + secp256k1_testrand256(tweak); ecount = 0; CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0); CHECK(ecount == 1); - CHECK(memcmp(&keypair, zeros96, sizeof(keypair)) == 0); + CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0); /* Only seckey part of keypair invalid */ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); memset(&keypair, 0, 32); @@ -486,7 +486,7 @@ void test_keypair_add(void) { unsigned char pk32[32]; int pk_parity; - secp256k1_rand256(tweak); + secp256k1_testrand256(tweak); CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1); CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1); CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1); @@ -498,11 +498,11 @@ void test_keypair_add(void) { /* Check that the resulting pubkey matches xonly_pubkey_tweak_add */ CHECK(secp256k1_keypair_pub(ctx, &output_pk_xy, &keypair) == 1); CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk_expected, &internal_pk, tweak) == 1); - CHECK(memcmp(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0); + CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0); /* Check that the secret key in the keypair is tweaked correctly */ CHECK(secp256k1_ec_pubkey_create(ctx, &output_pk_expected, &keypair.data[0]) == 1); - CHECK(memcmp(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0); + CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0); } secp256k1_context_destroy(none); secp256k1_context_destroy(sign); diff --git a/src/modules/recovery/Makefile.am.include b/src/modules/recovery/Makefile.am.include index bf23c26e71..e2d3f1248d 100644 --- a/src/modules/recovery/Makefile.am.include +++ b/src/modules/recovery/Makefile.am.include @@ -1,6 +1,7 @@ include_HEADERS += include/secp256k1_recovery.h noinst_HEADERS += src/modules/recovery/main_impl.h noinst_HEADERS += src/modules/recovery/tests_impl.h +noinst_HEADERS += src/modules/recovery/tests_exhaustive_impl.h if USE_BENCHMARK noinst_PROGRAMS += bench_recover bench_recover_SOURCES = src/bench_recover.c diff --git a/src/modules/recovery/tests_exhaustive_impl.h b/src/modules/recovery/tests_exhaustive_impl.h new file mode 100644 index 0000000000..a2f381d77a --- /dev/null +++ b/src/modules/recovery/tests_exhaustive_impl.h @@ -0,0 +1,149 @@ +/********************************************************************** + * Copyright (c) 2016 Andrew Poelstra * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H +#define SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H + +#include "src/modules/recovery/main_impl.h" +#include "include/secp256k1_recovery.h" + +void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group) { + int i, j, k; + uint64_t iter = 0; + + /* Loop */ + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */ + for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */ + if (skip_section(&iter)) continue; + for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */ + const int starting_k = k; + secp256k1_fe r_dot_y_normalized; + secp256k1_ecdsa_recoverable_signature rsig; + secp256k1_ecdsa_signature sig; + secp256k1_scalar sk, msg, r, s, expected_r; + unsigned char sk32[32], msg32[32]; + int expected_recid; + int recid; + int overflow; + secp256k1_scalar_set_int(&msg, i); + secp256k1_scalar_set_int(&sk, j); + secp256k1_scalar_get_b32(sk32, &sk); + secp256k1_scalar_get_b32(msg32, &msg); + + secp256k1_ecdsa_sign_recoverable(ctx, &rsig, msg32, sk32, secp256k1_nonce_function_smallint, &k); + + /* Check directly */ + secp256k1_ecdsa_recoverable_signature_load(ctx, &r, &s, &recid, &rsig); + r_from_k(&expected_r, group, k, &overflow); + CHECK(r == expected_r); + CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER || + (k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER); + /* The recid's second bit is for conveying overflow (R.x value >= group order). + * In the actual secp256k1 this is an astronomically unlikely event, but in the + * small group used here, it will be the case for all points except the ones where + * R.x=1 (which the group is specifically selected to have). + * Note that this isn't actually useful; full recovery would need to convey + * floor(R.x / group_order), but only one bit is used as that is sufficient + * in the real group. */ + expected_recid = overflow ? 2 : 0; + r_dot_y_normalized = group[k].y; + secp256k1_fe_normalize(&r_dot_y_normalized); + /* Also the recovery id is flipped depending if we hit the low-s branch */ + if ((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER) { + expected_recid |= secp256k1_fe_is_odd(&r_dot_y_normalized); + } else { + expected_recid |= !secp256k1_fe_is_odd(&r_dot_y_normalized); + } + CHECK(recid == expected_recid); + + /* Convert to a standard sig then check */ + secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); + secp256k1_ecdsa_signature_load(ctx, &r, &s, &sig); + /* Note that we compute expected_r *after* signing -- this is important + * because our nonce-computing function function might change k during + * signing. */ + r_from_k(&expected_r, group, k, NULL); + CHECK(r == expected_r); + CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER || + (k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER); + + /* Overflow means we've tried every possible nonce */ + if (k < starting_k) { + break; + } + } + } + } +} + +void test_exhaustive_recovery_verify(const secp256k1_context *ctx, const secp256k1_ge *group) { + /* This is essentially a copy of test_exhaustive_verify, with recovery added */ + int s, r, msg, key; + uint64_t iter = 0; + for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) { + for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) { + for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) { + for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) { + secp256k1_ge nonconst_ge; + secp256k1_ecdsa_recoverable_signature rsig; + secp256k1_ecdsa_signature sig; + secp256k1_pubkey pk; + secp256k1_scalar sk_s, msg_s, r_s, s_s; + secp256k1_scalar s_times_k_s, msg_plus_r_times_sk_s; + int recid = 0; + int k, should_verify; + unsigned char msg32[32]; + + if (skip_section(&iter)) continue; + + secp256k1_scalar_set_int(&s_s, s); + secp256k1_scalar_set_int(&r_s, r); + secp256k1_scalar_set_int(&msg_s, msg); + secp256k1_scalar_set_int(&sk_s, key); + secp256k1_scalar_get_b32(msg32, &msg_s); + + /* Verify by hand */ + /* Run through every k value that gives us this r and check that *one* works. + * Note there could be none, there could be multiple, ECDSA is weird. */ + should_verify = 0; + for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) { + secp256k1_scalar check_x_s; + r_from_k(&check_x_s, group, k, NULL); + if (r_s == check_x_s) { + secp256k1_scalar_set_int(&s_times_k_s, k); + secp256k1_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s); + secp256k1_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s); + secp256k1_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s); + should_verify |= secp256k1_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s); + } + } + /* nb we have a "high s" rule */ + should_verify &= !secp256k1_scalar_is_high(&s_s); + + /* We would like to try recovering the pubkey and checking that it matches, + * but pubkey recovery is impossible in the exhaustive tests (the reason + * being that there are 12 nonzero r values, 12 nonzero points, and no + * overlap between the sets, so there are no valid signatures). */ + + /* Verify by converting to a standard signature and calling verify */ + secp256k1_ecdsa_recoverable_signature_save(&rsig, &r_s, &s_s, recid); + secp256k1_ecdsa_recoverable_signature_convert(ctx, &sig, &rsig); + memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge)); + secp256k1_pubkey_save(&pk, &nonconst_ge); + CHECK(should_verify == + secp256k1_ecdsa_verify(ctx, &sig, msg32, &pk)); + } + } + } + } +} + +static void test_exhaustive_recovery(const secp256k1_context *ctx, const secp256k1_ge *group) { + test_exhaustive_recovery_sign(ctx, group); + test_exhaustive_recovery_verify(ctx, group); +} + +#endif /* SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H */ diff --git a/src/modules/recovery/tests_impl.h b/src/modules/recovery/tests_impl.h index 38a533a755..09cae38403 100644 --- a/src/modules/recovery/tests_impl.h +++ b/src/modules/recovery/tests_impl.h @@ -25,7 +25,7 @@ static int recovery_test_nonce_function(unsigned char *nonce32, const unsigned c } /* On the next run, return a valid nonce, but flip a coin as to whether or not to fail signing. */ memset(nonce32, 1, 32); - return secp256k1_rand_bits(1); + return secp256k1_testrand_bits(1); } void test_ecdsa_recovery_api(void) { @@ -184,7 +184,7 @@ void test_ecdsa_recovery_end_to_end(void) { CHECK(secp256k1_ecdsa_sign_recoverable(ctx, &rsignature[3], message, privkey, NULL, extra) == 1); CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1); CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); - CHECK(memcmp(&signature[4], &signature[0], 64) == 0); + CHECK(secp256k1_memcmp_var(&signature[4], &signature[0], 64) == 0); CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 1); memset(&rsignature[4], 0, sizeof(rsignature[4])); CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); @@ -193,16 +193,16 @@ void test_ecdsa_recovery_end_to_end(void) { /* Parse compact (with recovery id) and recover. */ CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 1); - CHECK(memcmp(&pubkey, &recpubkey, sizeof(pubkey)) == 0); + CHECK(secp256k1_memcmp_var(&pubkey, &recpubkey, sizeof(pubkey)) == 0); /* Serialize/destroy/parse signature and verify again. */ CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &rsignature[4]) == 1); - sig[secp256k1_rand_bits(6)] += 1 + secp256k1_rand_int(255); + sig[secp256k1_testrand_bits(6)] += 1 + secp256k1_testrand_int(255); CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(ctx, &rsignature[4], sig, recid) == 1); CHECK(secp256k1_ecdsa_recoverable_signature_convert(ctx, &signature[4], &rsignature[4]) == 1); CHECK(secp256k1_ecdsa_verify(ctx, &signature[4], message, &pubkey) == 0); /* Recover again */ CHECK(secp256k1_ecdsa_recover(ctx, &recpubkey, &rsignature[4], message) == 0 || - memcmp(&pubkey, &recpubkey, sizeof(pubkey)) != 0); + secp256k1_memcmp_var(&pubkey, &recpubkey, sizeof(pubkey)) != 0); } /* Tests several edge cases. */ diff --git a/src/modules/schnorrsig/Makefile.am.include b/src/modules/schnorrsig/Makefile.am.include index a82bafe43f..568bcc3523 100644 --- a/src/modules/schnorrsig/Makefile.am.include +++ b/src/modules/schnorrsig/Makefile.am.include @@ -1,6 +1,7 @@ include_HEADERS += include/secp256k1_schnorrsig.h noinst_HEADERS += src/modules/schnorrsig/main_impl.h noinst_HEADERS += src/modules/schnorrsig/tests_impl.h +noinst_HEADERS += src/modules/schnorrsig/tests_exhaustive_impl.h if USE_BENCHMARK noinst_PROGRAMS += bench_schnorrsig bench_schnorrsig_SOURCES = src/bench_schnorrsig.c diff --git a/src/modules/schnorrsig/main_impl.h b/src/modules/schnorrsig/main_impl.h index a0218f881a..b0d8481f9b 100644 --- a/src/modules/schnorrsig/main_impl.h +++ b/src/modules/schnorrsig/main_impl.h @@ -68,7 +68,7 @@ static int nonce_function_bip340(unsigned char *nonce32, const unsigned char *ms /* Tag the hash with algo16 which is important to avoid nonce reuse across * algorithms. If this nonce function is used in BIP-340 signing as defined * in the spec, an optimized tagging implementation is used. */ - if (memcmp(algo16, bip340_algo16, 16) == 0) { + if (secp256k1_memcmp_var(algo16, bip340_algo16, 16) == 0) { secp256k1_nonce_function_bip340_sha256_tagged(&sha); } else { int algo16_len = 16; @@ -108,6 +108,22 @@ static void secp256k1_schnorrsig_sha256_tagged(secp256k1_sha256 *sha) { sha->bytes = 64; } +static void secp256k1_schnorrsig_challenge(secp256k1_scalar* e, const unsigned char *r32, const unsigned char *msg32, const unsigned char *pubkey32) +{ + unsigned char buf[32]; + secp256k1_sha256 sha; + + /* tagged hash(r.x, pk.x, msg32) */ + secp256k1_schnorrsig_sha256_tagged(&sha); + secp256k1_sha256_write(&sha, r32, 32); + secp256k1_sha256_write(&sha, pubkey32, 32); + secp256k1_sha256_write(&sha, msg32, 32); + secp256k1_sha256_finalize(&sha, buf); + /* Set scalar e to the challenge hash modulo the curve order as per + * BIP340. */ + secp256k1_scalar_set_b32(e, buf, NULL); +} + int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char *msg32, const secp256k1_keypair *keypair, secp256k1_nonce_function_hardened noncefp, void *ndata) { secp256k1_scalar sk; secp256k1_scalar e; @@ -115,7 +131,6 @@ int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64 secp256k1_gej rj; secp256k1_ge pk; secp256k1_ge r; - secp256k1_sha256 sha; unsigned char buf[32] = { 0 }; unsigned char pk_buf[32]; unsigned char seckey[32]; @@ -159,16 +174,7 @@ int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, unsigned char *sig64 secp256k1_fe_normalize_var(&r.x); secp256k1_fe_get_b32(&sig64[0], &r.x); - /* tagged hash(r.x, pk.x, msg32) */ - secp256k1_schnorrsig_sha256_tagged(&sha); - secp256k1_sha256_write(&sha, &sig64[0], 32); - secp256k1_sha256_write(&sha, pk_buf, sizeof(pk_buf)); - secp256k1_sha256_write(&sha, msg32, 32); - secp256k1_sha256_finalize(&sha, buf); - - /* Set scalar e to the challenge hash modulo the curve order as per - * BIP340. */ - secp256k1_scalar_set_b32(&e, buf, NULL); + secp256k1_schnorrsig_challenge(&e, &sig64[0], msg32, pk_buf); secp256k1_scalar_mul(&e, &e, &sk); secp256k1_scalar_add(&e, &e, &k); secp256k1_scalar_get_b32(&sig64[32], &e); @@ -189,7 +195,6 @@ int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned cha secp256k1_gej pkj; secp256k1_fe rx; secp256k1_ge r; - secp256k1_sha256 sha; unsigned char buf[32]; int overflow; @@ -212,13 +217,9 @@ int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const unsigned cha return 0; } - secp256k1_schnorrsig_sha256_tagged(&sha); - secp256k1_sha256_write(&sha, &sig64[0], 32); + /* Compute e. */ secp256k1_fe_get_b32(buf, &pk.x); - secp256k1_sha256_write(&sha, buf, sizeof(buf)); - secp256k1_sha256_write(&sha, msg32, 32); - secp256k1_sha256_finalize(&sha, buf); - secp256k1_scalar_set_b32(&e, buf, NULL); + secp256k1_schnorrsig_challenge(&e, &sig64[0], msg32, buf); /* Compute rj = s*G + (-e)*pkj */ secp256k1_scalar_negate(&e, &e); diff --git a/src/modules/schnorrsig/tests_exhaustive_impl.h b/src/modules/schnorrsig/tests_exhaustive_impl.h new file mode 100644 index 0000000000..4bf0bc1680 --- /dev/null +++ b/src/modules/schnorrsig/tests_exhaustive_impl.h @@ -0,0 +1,206 @@ +/********************************************************************** + * Copyright (c) 2020 Pieter Wuille * + * Distributed under the MIT software license, see the accompanying * + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* + **********************************************************************/ + +#ifndef _SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_ +#define _SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_ + +#include "include/secp256k1_schnorrsig.h" +#include "src/modules/schnorrsig/main_impl.h" + +static const unsigned char invalid_pubkey_bytes[][32] = { + /* 0 */ + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 + }, + /* 2 */ + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 + }, + /* order */ + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 24) & 0xFF, + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 16) & 0xFF, + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 8) & 0xFF, + (EXHAUSTIVE_TEST_ORDER + 0UL) & 0xFF + }, + /* order + 1 */ + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 24) & 0xFF, + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 16) & 0xFF, + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 8) & 0xFF, + (EXHAUSTIVE_TEST_ORDER + 1UL) & 0xFF + }, + /* field size */ + { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F + }, + /* field size + 1 (note that 1 is legal) */ + { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30 + }, + /* 2^256 - 1 */ + { + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF + } +}; + +#define NUM_INVALID_KEYS (sizeof(invalid_pubkey_bytes) / sizeof(invalid_pubkey_bytes[0])) + +static int secp256k1_hardened_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, + const unsigned char *key32, const unsigned char *xonly_pk32, + const unsigned char *algo16, void* data) { + secp256k1_scalar s; + int *idata = data; + (void)msg32; + (void)key32; + (void)xonly_pk32; + (void)algo16; + secp256k1_scalar_set_int(&s, *idata); + secp256k1_scalar_get_b32(nonce32, &s); + return 1; +} + +static void test_exhaustive_schnorrsig_verify(const secp256k1_context *ctx, const secp256k1_xonly_pubkey* pubkeys, unsigned char (*xonly_pubkey_bytes)[32], const int* parities) { + int d; + uint64_t iter = 0; + /* Iterate over the possible public keys to verify against (through their corresponding DL d). */ + for (d = 1; d <= EXHAUSTIVE_TEST_ORDER / 2; ++d) { + int actual_d; + unsigned k; + unsigned char pk32[32]; + memcpy(pk32, xonly_pubkey_bytes[d - 1], 32); + actual_d = parities[d - 1] ? EXHAUSTIVE_TEST_ORDER - d : d; + /* Iterate over the possible valid first 32 bytes in the signature, through their corresponding DL k. + Values above EXHAUSTIVE_TEST_ORDER/2 refer to the entries in invalid_pubkey_bytes. */ + for (k = 1; k <= EXHAUSTIVE_TEST_ORDER / 2 + NUM_INVALID_KEYS; ++k) { + unsigned char sig64[64]; + int actual_k = -1; + int e_done[EXHAUSTIVE_TEST_ORDER] = {0}; + int e_count_done = 0; + if (skip_section(&iter)) continue; + if (k <= EXHAUSTIVE_TEST_ORDER / 2) { + memcpy(sig64, xonly_pubkey_bytes[k - 1], 32); + actual_k = parities[k - 1] ? EXHAUSTIVE_TEST_ORDER - k : k; + } else { + memcpy(sig64, invalid_pubkey_bytes[k - 1 - EXHAUSTIVE_TEST_ORDER / 2], 32); + } + /* Randomly generate messages until all challenges have been hit. */ + while (e_count_done < EXHAUSTIVE_TEST_ORDER) { + secp256k1_scalar e; + unsigned char msg32[32]; + secp256k1_testrand256(msg32); + secp256k1_schnorrsig_challenge(&e, sig64, msg32, pk32); + /* Only do work if we hit a challenge we haven't tried before. */ + if (!e_done[e]) { + /* Iterate over the possible valid last 32 bytes in the signature. + 0..order=that s value; order+1=random bytes */ + int count_valid = 0, s; + for (s = 0; s <= EXHAUSTIVE_TEST_ORDER + 1; ++s) { + int expect_valid, valid; + if (s <= EXHAUSTIVE_TEST_ORDER) { + secp256k1_scalar s_s; + secp256k1_scalar_set_int(&s_s, s); + secp256k1_scalar_get_b32(sig64 + 32, &s_s); + expect_valid = actual_k != -1 && s != EXHAUSTIVE_TEST_ORDER && + (s_s == (actual_k + actual_d * e) % EXHAUSTIVE_TEST_ORDER); + } else { + secp256k1_testrand256(sig64 + 32); + expect_valid = 0; + } + valid = secp256k1_schnorrsig_verify(ctx, sig64, msg32, &pubkeys[d - 1]); + CHECK(valid == expect_valid); + count_valid += valid; + } + /* Exactly one s value must verify, unless R is illegal. */ + CHECK(count_valid == (actual_k != -1)); + /* Don't retry other messages that result in the same challenge. */ + e_done[e] = 1; + ++e_count_done; + } + } + } + } +} + +static void test_exhaustive_schnorrsig_sign(const secp256k1_context *ctx, unsigned char (*xonly_pubkey_bytes)[32], const secp256k1_keypair* keypairs, const int* parities) { + int d, k; + uint64_t iter = 0; + /* Loop over keys. */ + for (d = 1; d < EXHAUSTIVE_TEST_ORDER; ++d) { + int actual_d = d; + if (parities[d - 1]) actual_d = EXHAUSTIVE_TEST_ORDER - d; + /* Loop over nonces. */ + for (k = 1; k < EXHAUSTIVE_TEST_ORDER; ++k) { + int e_done[EXHAUSTIVE_TEST_ORDER] = {0}; + int e_count_done = 0; + unsigned char msg32[32]; + unsigned char sig64[64]; + int actual_k = k; + if (skip_section(&iter)) continue; + if (parities[k - 1]) actual_k = EXHAUSTIVE_TEST_ORDER - k; + /* Generate random messages until all challenges have been tried. */ + while (e_count_done < EXHAUSTIVE_TEST_ORDER) { + secp256k1_scalar e; + secp256k1_testrand256(msg32); + secp256k1_schnorrsig_challenge(&e, xonly_pubkey_bytes[k - 1], msg32, xonly_pubkey_bytes[d - 1]); + /* Only do work if we hit a challenge we haven't tried before. */ + if (!e_done[e]) { + secp256k1_scalar expected_s = (actual_k + e * actual_d) % EXHAUSTIVE_TEST_ORDER; + unsigned char expected_s_bytes[32]; + secp256k1_scalar_get_b32(expected_s_bytes, &expected_s); + /* Invoke the real function to construct a signature. */ + CHECK(secp256k1_schnorrsig_sign(ctx, sig64, msg32, &keypairs[d - 1], secp256k1_hardened_nonce_function_smallint, &k)); + /* The first 32 bytes must match the xonly pubkey for the specified k. */ + CHECK(secp256k1_memcmp_var(sig64, xonly_pubkey_bytes[k - 1], 32) == 0); + /* The last 32 bytes must match the expected s value. */ + CHECK(secp256k1_memcmp_var(sig64 + 32, expected_s_bytes, 32) == 0); + /* Don't retry other messages that result in the same challenge. */ + e_done[e] = 1; + ++e_count_done; + } + } + } + } +} + +static void test_exhaustive_schnorrsig(const secp256k1_context *ctx) { + secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1]; + secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1]; + int parity[EXHAUSTIVE_TEST_ORDER - 1]; + unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32]; + unsigned i; + + /* Verify that all invalid_pubkey_bytes are actually invalid. */ + for (i = 0; i < NUM_INVALID_KEYS; ++i) { + secp256k1_xonly_pubkey pk; + CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk, invalid_pubkey_bytes[i])); + } + + /* Construct keypairs and xonly-pubkeys for the entire group. */ + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; ++i) { + secp256k1_scalar scalar_i; + unsigned char buf[32]; + secp256k1_scalar_set_int(&scalar_i, i); + secp256k1_scalar_get_b32(buf, &scalar_i); + CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf)); + CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parity[i - 1], &keypair[i - 1])); + CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1])); + } + + test_exhaustive_schnorrsig_sign(ctx, xonly_pubkey_bytes, keypair, parity); + test_exhaustive_schnorrsig_verify(ctx, xonly_pubkey, xonly_pubkey_bytes, parity); +} + +#endif diff --git a/src/modules/schnorrsig/tests_impl.h b/src/modules/schnorrsig/tests_impl.h index 88d8f56404..f522fcb320 100644 --- a/src/modules/schnorrsig/tests_impl.h +++ b/src/modules/schnorrsig/tests_impl.h @@ -15,9 +15,9 @@ void nonce_function_bip340_bitflip(unsigned char **args, size_t n_flip, size_t n_bytes) { unsigned char nonces[2][32]; CHECK(nonce_function_bip340(nonces[0], args[0], args[1], args[2], args[3], args[4]) == 1); - secp256k1_rand_flip(args[n_flip], n_bytes); + secp256k1_testrand_flip(args[n_flip], n_bytes); CHECK(nonce_function_bip340(nonces[1], args[0], args[1], args[2], args[3], args[4]) == 1); - CHECK(memcmp(nonces[0], nonces[1], 32) != 0); + CHECK(secp256k1_memcmp_var(nonces[0], nonces[1], 32) != 0); } /* Tests for the equality of two sha256 structs. This function only produces a @@ -28,7 +28,7 @@ void test_sha256_eq(const secp256k1_sha256 *sha1, const secp256k1_sha256 *sha2) CHECK((sha1->bytes & 0x3F) == 0); CHECK(sha1->bytes == sha2->bytes); - CHECK(memcmp(sha1->s, sha2->s, sizeof(sha1->s)) == 0); + CHECK(secp256k1_memcmp_var(sha1->s, sha2->s, sizeof(sha1->s)) == 0); } void run_nonce_function_bip340_tests(void) { @@ -59,10 +59,10 @@ void run_nonce_function_bip340_tests(void) { secp256k1_nonce_function_bip340_sha256_tagged_aux(&sha_optimized); test_sha256_eq(&sha, &sha_optimized); - secp256k1_rand256(msg); - secp256k1_rand256(key); - secp256k1_rand256(pk); - secp256k1_rand256(aux_rand); + secp256k1_testrand256(msg); + secp256k1_testrand256(key); + secp256k1_testrand256(pk); + secp256k1_testrand256(aux_rand); /* Check that a bitflip in an argument results in different nonces. */ args[0] = msg; @@ -124,10 +124,10 @@ void test_schnorrsig_api(void) { secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount); secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount); - secp256k1_rand256(sk1); - secp256k1_rand256(sk2); - secp256k1_rand256(sk3); - secp256k1_rand256(msg); + secp256k1_testrand256(sk1); + secp256k1_testrand256(sk2); + secp256k1_testrand256(sk3); + secp256k1_testrand256(msg); CHECK(secp256k1_keypair_create(ctx, &keypairs[0], sk1) == 1); CHECK(secp256k1_keypair_create(ctx, &keypairs[1], sk2) == 1); CHECK(secp256k1_keypair_create(ctx, &keypairs[2], sk3) == 1); @@ -197,11 +197,11 @@ void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const un CHECK(secp256k1_keypair_create(ctx, &keypair, sk)); CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, aux_rand)); - CHECK(memcmp(sig, expected_sig, 64) == 0); + CHECK(secp256k1_memcmp_var(sig, expected_sig, 64) == 0); CHECK(secp256k1_xonly_pubkey_parse(ctx, &pk_expected, pk_serialized)); CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair)); - CHECK(memcmp(&pk, &pk_expected, sizeof(pk)) == 0); + CHECK(secp256k1_memcmp_var(&pk, &pk_expected, sizeof(pk)) == 0); CHECK(secp256k1_schnorrsig_verify(ctx, sig, msg, &pk)); } @@ -675,19 +675,19 @@ void test_schnorrsig_sign(void) { unsigned char sig[64]; unsigned char zeros64[64] = { 0 }; - secp256k1_rand256(sk); + secp256k1_testrand256(sk); CHECK(secp256k1_keypair_create(ctx, &keypair, sk)); CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL) == 1); /* Test different nonce functions */ memset(sig, 1, sizeof(sig)); CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_failing, NULL) == 0); - CHECK(memcmp(sig, zeros64, sizeof(sig)) == 0); + CHECK(secp256k1_memcmp_var(sig, zeros64, sizeof(sig)) == 0); memset(&sig, 1, sizeof(sig)); CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_0, NULL) == 0); - CHECK(memcmp(sig, zeros64, sizeof(sig)) == 0); + CHECK(secp256k1_memcmp_var(sig, zeros64, sizeof(sig)) == 0); CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, nonce_function_overflowing, NULL) == 1); - CHECK(memcmp(sig, zeros64, sizeof(sig)) != 0); + CHECK(secp256k1_memcmp_var(sig, zeros64, sizeof(sig)) != 0); } #define N_SIGS 3 @@ -703,12 +703,12 @@ void test_schnorrsig_sign_verify(void) { secp256k1_xonly_pubkey pk; secp256k1_scalar s; - secp256k1_rand256(sk); + secp256k1_testrand256(sk); CHECK(secp256k1_keypair_create(ctx, &keypair, sk)); CHECK(secp256k1_keypair_xonly_pub(ctx, &pk, NULL, &keypair)); for (i = 0; i < N_SIGS; i++) { - secp256k1_rand256(msg[i]); + secp256k1_testrand256(msg[i]); CHECK(secp256k1_schnorrsig_sign(ctx, sig[i], msg[i], &keypair, NULL, NULL)); CHECK(secp256k1_schnorrsig_verify(ctx, sig[i], msg[i], &pk)); } @@ -716,19 +716,19 @@ void test_schnorrsig_sign_verify(void) { { /* Flip a few bits in the signature and in the message and check that * verify and verify_batch (TODO) fail */ - size_t sig_idx = secp256k1_rand_int(N_SIGS); - size_t byte_idx = secp256k1_rand_int(32); - unsigned char xorbyte = secp256k1_rand_int(254)+1; + size_t sig_idx = secp256k1_testrand_int(N_SIGS); + size_t byte_idx = secp256k1_testrand_int(32); + unsigned char xorbyte = secp256k1_testrand_int(254)+1; sig[sig_idx][byte_idx] ^= xorbyte; CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk)); sig[sig_idx][byte_idx] ^= xorbyte; - byte_idx = secp256k1_rand_int(32); + byte_idx = secp256k1_testrand_int(32); sig[sig_idx][32+byte_idx] ^= xorbyte; CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk)); sig[sig_idx][32+byte_idx] ^= xorbyte; - byte_idx = secp256k1_rand_int(32); + byte_idx = secp256k1_testrand_int(32); msg[sig_idx][byte_idx] ^= xorbyte; CHECK(!secp256k1_schnorrsig_verify(ctx, sig[sig_idx], msg[sig_idx], &pk)); msg[sig_idx][byte_idx] ^= xorbyte; @@ -766,7 +766,7 @@ void test_schnorrsig_taproot(void) { unsigned char sig[64]; /* Create output key */ - secp256k1_rand256(sk); + secp256k1_testrand256(sk); CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1); CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1); /* In actual taproot the tweak would be hash of internal_pk */ @@ -776,7 +776,7 @@ void test_schnorrsig_taproot(void) { CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk_bytes, &output_pk) == 1); /* Key spend */ - secp256k1_rand256(msg); + secp256k1_testrand256(msg); CHECK(secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL) == 1); /* Verify key spend */ CHECK(secp256k1_xonly_pubkey_parse(ctx, &output_pk, output_pk_bytes) == 1); |