aboutsummaryrefslogtreecommitdiff
path: root/test/functional/test_framework
diff options
context:
space:
mode:
authorfanquake <fanquake@gmail.com>2019-07-04 08:40:12 +0800
committerfanquake <fanquake@gmail.com>2019-07-04 10:18:47 +0800
commit629c7b029cf934932be3699da592cfbe6e146f8a (patch)
treee371534349ca64f0791a8854232136980674bb16 /test/functional/test_framework
parent9c29bc71dc40de4e6ff94c272d63449a7a87ba0a (diff)
parentbcb27d7b03d1e7a4404c04859f8146d8bc7c360a (diff)
downloadbitcoin-629c7b029cf934932be3699da592cfbe6e146f8a.tar.xz
Merge #16035: 0.18.1: Backports
bcb27d7b0 .python-version: Bump to 3.5.6 (MarcoFalke) af25a757e Add comments to Python ECDSA implementation (John Newbery) 715da91e9 Set AA_EnableHighDpiScaling attribute early (Hennadii Stepanov) 2800b3d5c gui: Fix open wallet menu initialization order (João Barbosa) e78007fc1 Make and get the multisig redeemscript and destination in one function instead of two (Andrew Chow) d9fc969e7 Pure python EC (Pieter Wuille) 23ba460c1 test: Add test that addmultisigaddress fails for watchonly addresses (MarcoFalke) 13b3bb564 test: Fixup creatmultisig documentation and whitespace (MarcoFalke) 79745d175 Replace remaining fprintf with tfm::format manually (MarcoFalke) beb09f09b scripted-diff: Replace fprintf with tfm::format (MarcoFalke) e29aa6e72 Exceptions should be caught by reference, not by value. (Kristaps Kaupe) f88959ba7 tinyformat: Add doc to Bitcoin Core specific strprintf (MarcoFalke) 0023c9789 rpc: bugfix: Properly use iswitness in converttopsbt (MarcoFalke) 832eb4ff5 Bugfix: test/functional/rpc_psbt: Correct test description comment (Luke Dashjr) 966d8d084 Bugfix: test/functional/rpc_psbt: Remove check for specific error message that depends on uncertain assumptions (Luke Dashjr) bb36ac82e rpc: Switch touched RPCs to IsValidNumArgs (MarcoFalke) d24d0ec05 Add example 2nd arg to signrawtransactionwithkey (Chris Moore) 592016ba1 fixup: Fix prunning test (João Barbosa) c80a498ae Fix RPC/pruneblockchain returned prune height (Jonas Schnelli) b2398240f gui: Enable open wallet menu on setWalletController (João Barbosa) d1f261150 Add test for GCC bug 90348 (Pieter Wuille) d80c558e0 gui: Set progressDialog to nullptr (João Barbosa) 7ed1a6019 gui: Enable console line edit on setClientModel (João Barbosa) b55cbe82d qt: fix opening bitcoin.conf via Preferences on macOS; see #15409 (shannon1916) b6c1f9478 Disallow extended encoding for non-witness transactions (take 3) (MarcoFalke) 86031083c Add test for superfluous witness record in deserialization (Gregory Sanders) 5a58ddb6d Fix missing input template by making minimal tx (Gregory Sanders) 206f5ee87 Disallow extended encoding for non-witness transactions (Pieter Wuille) 3dbc7def0 Show loaded wallets as disabled in open menu instead of nothing (MeshCollider) a635377b6 Install bitcoin-wallet manpage. (Daniel Kraft) eb85ee62b Doc: remove text about txes always relayed from -whitelist (David A. Harding) 890a92eba doc: Mention blocksonly in reduce-traffic.md, unhide option (MarcoFalke) 3460555f4 test: Add test for p2p_blocksonly (MarcoFalke) 8f215c7a2 test: Format predicate source as multiline on error (MarcoFalke) 9c1a607a0 net: Rename ::fRelayTxes to ::g_relay_txes (MarcoFalke) 5935f0126 build with -fstack-reuse=none (MarcoFalke) Pull request description: Tree-SHA512: 5cd73a4319cb69c92b528239cf97c0ed5fcf2b9e8c7fe154e4679eeec95db433a0223d8dc574e4cdc96c1913cfdf160b10c42dcdbcb5bbc8fb743c07930ef9da
Diffstat (limited to 'test/functional/test_framework')
-rw-r--r--test/functional/test_framework/key.py574
-rwxr-xr-xtest/functional/test_framework/mininode.py8
-rw-r--r--test/functional/test_framework/util.py2
3 files changed, 376 insertions, 208 deletions
diff --git a/test/functional/test_framework/key.py b/test/functional/test_framework/key.py
index 1b3e510dc4..912c0ca978 100644
--- a/test/functional/test_framework/key.py
+++ b/test/functional/test_framework/key.py
@@ -1,226 +1,386 @@
-# Copyright (c) 2011 Sam Rushing
-"""ECC secp256k1 OpenSSL wrapper.
+# Copyright (c) 2019 Pieter Wuille
+# Distributed under the MIT software license, see the accompanying
+# file COPYING or http://www.opensource.org/licenses/mit-license.php.
+"""Test-only secp256k1 elliptic curve implementation
-WARNING: This module does not mlock() secrets; your private keys may end up on
-disk in swap! Use with caution!
+WARNING: This code is slow, uses bad randomness, does not properly protect
+keys, and is trivially vulnerable to side channel attacks. Do not use for
+anything but tests."""
+import random
-This file is modified from python-bitcoinlib.
-"""
-
-import ctypes
-import ctypes.util
-import hashlib
-
-ssl = ctypes.cdll.LoadLibrary(ctypes.util.find_library ('ssl') or 'libeay32')
-
-ssl.BN_new.restype = ctypes.c_void_p
-ssl.BN_new.argtypes = []
-
-ssl.BN_bin2bn.restype = ctypes.c_void_p
-ssl.BN_bin2bn.argtypes = [ctypes.c_char_p, ctypes.c_int, ctypes.c_void_p]
-
-ssl.BN_CTX_free.restype = None
-ssl.BN_CTX_free.argtypes = [ctypes.c_void_p]
-
-ssl.BN_CTX_new.restype = ctypes.c_void_p
-ssl.BN_CTX_new.argtypes = []
-
-ssl.ECDH_compute_key.restype = ctypes.c_int
-ssl.ECDH_compute_key.argtypes = [ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p]
-
-ssl.ECDSA_sign.restype = ctypes.c_int
-ssl.ECDSA_sign.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
-
-ssl.ECDSA_verify.restype = ctypes.c_int
-ssl.ECDSA_verify.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p]
-
-ssl.EC_KEY_free.restype = None
-ssl.EC_KEY_free.argtypes = [ctypes.c_void_p]
-
-ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p
-ssl.EC_KEY_new_by_curve_name.argtypes = [ctypes.c_int]
-
-ssl.EC_KEY_get0_group.restype = ctypes.c_void_p
-ssl.EC_KEY_get0_group.argtypes = [ctypes.c_void_p]
-
-ssl.EC_KEY_get0_public_key.restype = ctypes.c_void_p
-ssl.EC_KEY_get0_public_key.argtypes = [ctypes.c_void_p]
-
-ssl.EC_KEY_set_private_key.restype = ctypes.c_int
-ssl.EC_KEY_set_private_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
-
-ssl.EC_KEY_set_conv_form.restype = None
-ssl.EC_KEY_set_conv_form.argtypes = [ctypes.c_void_p, ctypes.c_int]
-
-ssl.EC_KEY_set_public_key.restype = ctypes.c_int
-ssl.EC_KEY_set_public_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
-
-ssl.i2o_ECPublicKey.restype = ctypes.c_void_p
-ssl.i2o_ECPublicKey.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
-
-ssl.EC_POINT_new.restype = ctypes.c_void_p
-ssl.EC_POINT_new.argtypes = [ctypes.c_void_p]
-
-ssl.EC_POINT_free.restype = None
-ssl.EC_POINT_free.argtypes = [ctypes.c_void_p]
-
-ssl.EC_POINT_mul.restype = ctypes.c_int
-ssl.EC_POINT_mul.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
-
-# this specifies the curve used with ECDSA.
-NID_secp256k1 = 714 # from openssl/obj_mac.h
+def modinv(a, n):
+ """Compute the modular inverse of a modulo n
+ See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers.
+ """
+ t1, t2 = 0, 1
+ r1, r2 = n, a
+ while r2 != 0:
+ q = r1 // r2
+ t1, t2 = t2, t1 - q * t2
+ r1, r2 = r2, r1 - q * r2
+ if r1 > 1:
+ return None
+ if t1 < 0:
+ t1 += n
+ return t1
+
+def jacobi_symbol(n, k):
+ """Compute the Jacobi symbol of n modulo k
+
+ See http://en.wikipedia.org/wiki/Jacobi_symbol
+
+ For our application k is always prime, so this is the same as the Legendre symbol."""
+ assert k > 0 and k & 1, "jacobi symbol is only defined for positive odd k"
+ n %= k
+ t = 0
+ while n != 0:
+ while n & 1 == 0:
+ n >>= 1
+ r = k & 7
+ t ^= (r == 3 or r == 5)
+ n, k = k, n
+ t ^= (n & k & 3 == 3)
+ n = n % k
+ if k == 1:
+ return -1 if t else 1
+ return 0
+
+def modsqrt(a, p):
+ """Compute the square root of a modulo p when p % 4 = 3.
+
+ The Tonelli-Shanks algorithm can be used. See https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm
+
+ Limiting this function to only work for p % 4 = 3 means we don't need to
+ iterate through the loop. The highest n such that p - 1 = 2^n Q with Q odd
+ is n = 1. Therefore Q = (p-1)/2 and sqrt = a^((Q+1)/2) = a^((p+1)/4)
+
+ secp256k1's is defined over field of size 2**256 - 2**32 - 977, which is 3 mod 4.
+ """
+ if p % 4 != 3:
+ raise NotImplementedError("modsqrt only implemented for p % 4 = 3")
+ sqrt = pow(a, (p + 1)//4, p)
+ if pow(sqrt, 2, p) == a % p:
+ return sqrt
+ return None
+
+class EllipticCurve:
+ def __init__(self, p, a, b):
+ """Initialize elliptic curve y^2 = x^3 + a*x + b over GF(p)."""
+ self.p = p
+ self.a = a % p
+ self.b = b % p
+
+ def affine(self, p1):
+ """Convert a Jacobian point tuple p1 to affine form, or None if at infinity.
+
+ An affine point is represented as the Jacobian (x, y, 1)"""
+ x1, y1, z1 = p1
+ if z1 == 0:
+ return None
+ inv = modinv(z1, self.p)
+ inv_2 = (inv**2) % self.p
+ inv_3 = (inv_2 * inv) % self.p
+ return ((inv_2 * x1) % self.p, (inv_3 * y1) % self.p, 1)
+
+ def negate(self, p1):
+ """Negate a Jacobian point tuple p1."""
+ x1, y1, z1 = p1
+ return (x1, (self.p - y1) % self.p, z1)
+
+ def on_curve(self, p1):
+ """Determine whether a Jacobian tuple p is on the curve (and not infinity)"""
+ x1, y1, z1 = p1
+ z2 = pow(z1, 2, self.p)
+ z4 = pow(z2, 2, self.p)
+ return z1 != 0 and (pow(x1, 3, self.p) + self.a * x1 * z4 + self.b * z2 * z4 - pow(y1, 2, self.p)) % self.p == 0
+
+ def is_x_coord(self, x):
+ """Test whether x is a valid X coordinate on the curve."""
+ x_3 = pow(x, 3, self.p)
+ return jacobi_symbol(x_3 + self.a * x + self.b, self.p) != -1
+
+ def lift_x(self, x):
+ """Given an X coordinate on the curve, return a corresponding affine point."""
+ x_3 = pow(x, 3, self.p)
+ v = x_3 + self.a * x + self.b
+ y = modsqrt(v, self.p)
+ if y is None:
+ return None
+ return (x, y, 1)
+
+ def double(self, p1):
+ """Double a Jacobian tuple p1
+
+ See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Doubling"""
+ x1, y1, z1 = p1
+ if z1 == 0:
+ return (0, 1, 0)
+ y1_2 = (y1**2) % self.p
+ y1_4 = (y1_2**2) % self.p
+ x1_2 = (x1**2) % self.p
+ s = (4*x1*y1_2) % self.p
+ m = 3*x1_2
+ if self.a:
+ m += self.a * pow(z1, 4, self.p)
+ m = m % self.p
+ x2 = (m**2 - 2*s) % self.p
+ y2 = (m*(s - x2) - 8*y1_4) % self.p
+ z2 = (2*y1*z1) % self.p
+ return (x2, y2, z2)
+
+ def add_mixed(self, p1, p2):
+ """Add a Jacobian tuple p1 and an affine tuple p2
+
+ See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition (with affine point)"""
+ x1, y1, z1 = p1
+ x2, y2, z2 = p2
+ assert(z2 == 1)
+ # Adding to the point at infinity is a no-op
+ if z1 == 0:
+ return p2
+ z1_2 = (z1**2) % self.p
+ z1_3 = (z1_2 * z1) % self.p
+ u2 = (x2 * z1_2) % self.p
+ s2 = (y2 * z1_3) % self.p
+ if x1 == u2:
+ if (y1 != s2):
+ # p1 and p2 are inverses. Return the point at infinity.
+ return (0, 1, 0)
+ # p1 == p2. The formulas below fail when the two points are equal.
+ return self.double(p1)
+ h = u2 - x1
+ r = s2 - y1
+ h_2 = (h**2) % self.p
+ h_3 = (h_2 * h) % self.p
+ u1_h_2 = (x1 * h_2) % self.p
+ x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
+ y3 = (r*(u1_h_2 - x3) - y1*h_3) % self.p
+ z3 = (h*z1) % self.p
+ return (x3, y3, z3)
+
+ def add(self, p1, p2):
+ """Add two Jacobian tuples p1 and p2
+
+ See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition"""
+ x1, y1, z1 = p1
+ x2, y2, z2 = p2
+ # Adding the point at infinity is a no-op
+ if z1 == 0:
+ return p2
+ if z2 == 0:
+ return p1
+ # Adding an Affine to a Jacobian is more efficient since we save field multiplications and squarings when z = 1
+ if z1 == 1:
+ return self.add_mixed(p2, p1)
+ if z2 == 1:
+ return self.add_mixed(p1, p2)
+ z1_2 = (z1**2) % self.p
+ z1_3 = (z1_2 * z1) % self.p
+ z2_2 = (z2**2) % self.p
+ z2_3 = (z2_2 * z2) % self.p
+ u1 = (x1 * z2_2) % self.p
+ u2 = (x2 * z1_2) % self.p
+ s1 = (y1 * z2_3) % self.p
+ s2 = (y2 * z1_3) % self.p
+ if u1 == u2:
+ if (s1 != s2):
+ # p1 and p2 are inverses. Return the point at infinity.
+ return (0, 1, 0)
+ # p1 == p2. The formulas below fail when the two points are equal.
+ return self.double(p1)
+ h = u2 - u1
+ r = s2 - s1
+ h_2 = (h**2) % self.p
+ h_3 = (h_2 * h) % self.p
+ u1_h_2 = (u1 * h_2) % self.p
+ x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
+ y3 = (r*(u1_h_2 - x3) - s1*h_3) % self.p
+ z3 = (h*z1*z2) % self.p
+ return (x3, y3, z3)
+
+ def mul(self, ps):
+ """Compute a (multi) point multiplication
+
+ ps is a list of (Jacobian tuple, scalar) pairs.
+ """
+ r = (0, 1, 0)
+ for i in range(255, -1, -1):
+ r = self.double(r)
+ for (p, n) in ps:
+ if ((n >> i) & 1):
+ r = self.add(r, p)
+ return r
+
+SECP256K1 = EllipticCurve(2**256 - 2**32 - 977, 0, 7)
+SECP256K1_G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8, 1)
SECP256K1_ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2
-# Thx to Sam Devlin for the ctypes magic 64-bit fix.
-def _check_result(val, func, args):
- if val == 0:
- raise ValueError
- else:
- return ctypes.c_void_p (val)
-
-ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p
-ssl.EC_KEY_new_by_curve_name.errcheck = _check_result
-
-class CECKey():
- """Wrapper around OpenSSL's EC_KEY"""
-
- POINT_CONVERSION_COMPRESSED = 2
- POINT_CONVERSION_UNCOMPRESSED = 4
+class ECPubKey():
+ """A secp256k1 public key"""
def __init__(self):
- self.k = ssl.EC_KEY_new_by_curve_name(NID_secp256k1)
-
- def __del__(self):
- if ssl:
- ssl.EC_KEY_free(self.k)
- self.k = None
-
- def set_secretbytes(self, secret):
- priv_key = ssl.BN_bin2bn(secret, 32, ssl.BN_new())
- group = ssl.EC_KEY_get0_group(self.k)
- pub_key = ssl.EC_POINT_new(group)
- ctx = ssl.BN_CTX_new()
- if not ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx):
- raise ValueError("Could not derive public key from the supplied secret.")
- ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx)
- ssl.EC_KEY_set_private_key(self.k, priv_key)
- ssl.EC_KEY_set_public_key(self.k, pub_key)
- ssl.EC_POINT_free(pub_key)
- ssl.BN_CTX_free(ctx)
- return self.k
-
- def set_privkey(self, key):
- self.mb = ctypes.create_string_buffer(key)
- return ssl.d2i_ECPrivateKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key))
-
- def set_pubkey(self, key):
- self.mb = ctypes.create_string_buffer(key)
- return ssl.o2i_ECPublicKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key))
-
- def get_privkey(self):
- size = ssl.i2d_ECPrivateKey(self.k, 0)
- mb_pri = ctypes.create_string_buffer(size)
- ssl.i2d_ECPrivateKey(self.k, ctypes.byref(ctypes.pointer(mb_pri)))
- return mb_pri.raw
-
- def get_pubkey(self):
- size = ssl.i2o_ECPublicKey(self.k, 0)
- mb = ctypes.create_string_buffer(size)
- ssl.i2o_ECPublicKey(self.k, ctypes.byref(ctypes.pointer(mb)))
- return mb.raw
-
- def get_raw_ecdh_key(self, other_pubkey):
- ecdh_keybuffer = ctypes.create_string_buffer(32)
- r = ssl.ECDH_compute_key(ctypes.pointer(ecdh_keybuffer), 32,
- ssl.EC_KEY_get0_public_key(other_pubkey.k),
- self.k, 0)
- if r != 32:
- raise Exception('CKey.get_ecdh_key(): ECDH_compute_key() failed')
- return ecdh_keybuffer.raw
-
- def get_ecdh_key(self, other_pubkey, kdf=lambda k: hashlib.sha256(k).digest()):
- # FIXME: be warned it's not clear what the kdf should be as a default
- r = self.get_raw_ecdh_key(other_pubkey)
- return kdf(r)
-
- def sign(self, hash, low_s = True):
- # FIXME: need unit tests for below cases
- if not isinstance(hash, bytes):
- raise TypeError('Hash must be bytes instance; got %r' % hash.__class__)
- if len(hash) != 32:
- raise ValueError('Hash must be exactly 32 bytes long')
-
- sig_size0 = ctypes.c_uint32()
- sig_size0.value = ssl.ECDSA_size(self.k)
- mb_sig = ctypes.create_string_buffer(sig_size0.value)
- result = ssl.ECDSA_sign(0, hash, len(hash), mb_sig, ctypes.byref(sig_size0), self.k)
- assert 1 == result
- assert mb_sig.raw[0] == 0x30
- assert mb_sig.raw[1] == sig_size0.value - 2
- total_size = mb_sig.raw[1]
- assert mb_sig.raw[2] == 2
- r_size = mb_sig.raw[3]
- assert mb_sig.raw[4 + r_size] == 2
- s_size = mb_sig.raw[5 + r_size]
- s_value = int.from_bytes(mb_sig.raw[6+r_size:6+r_size+s_size], byteorder='big')
- if (not low_s) or s_value <= SECP256K1_ORDER_HALF:
- return mb_sig.raw[:sig_size0.value]
- else:
- low_s_value = SECP256K1_ORDER - s_value
- low_s_bytes = (low_s_value).to_bytes(33, byteorder='big')
- while len(low_s_bytes) > 1 and low_s_bytes[0] == 0 and low_s_bytes[1] < 0x80:
- low_s_bytes = low_s_bytes[1:]
- new_s_size = len(low_s_bytes)
- new_total_size_byte = (total_size + new_s_size - s_size).to_bytes(1,byteorder='big')
- new_s_size_byte = (new_s_size).to_bytes(1,byteorder='big')
- return b'\x30' + new_total_size_byte + mb_sig.raw[2:5+r_size] + new_s_size_byte + low_s_bytes
-
- def verify(self, hash, sig):
- """Verify a DER signature"""
- return ssl.ECDSA_verify(0, hash, len(hash), sig, len(sig), self.k) == 1
-
- def set_compressed(self, compressed):
- if compressed:
- form = self.POINT_CONVERSION_COMPRESSED
+ """Construct an uninitialized public key"""
+ self.valid = False
+
+ def set(self, data):
+ """Construct a public key from a serialization in compressed or uncompressed format"""
+ if (len(data) == 65 and data[0] == 0x04):
+ p = (int.from_bytes(data[1:33], 'big'), int.from_bytes(data[33:65], 'big'), 1)
+ self.valid = SECP256K1.on_curve(p)
+ if self.valid:
+ self.p = p
+ self.compressed = False
+ elif (len(data) == 33 and (data[0] == 0x02 or data[0] == 0x03)):
+ x = int.from_bytes(data[1:33], 'big')
+ if SECP256K1.is_x_coord(x):
+ p = SECP256K1.lift_x(x)
+ # if the oddness of the y co-ord isn't correct, find the other
+ # valid y
+ if (p[1] & 1) != (data[0] & 1):
+ p = SECP256K1.negate(p)
+ self.p = p
+ self.valid = True
+ self.compressed = True
+ else:
+ self.valid = False
else:
- form = self.POINT_CONVERSION_UNCOMPRESSED
- ssl.EC_KEY_set_conv_form(self.k, form)
-
+ self.valid = False
-class CPubKey(bytes):
- """An encapsulated public key
-
- Attributes:
+ @property
+ def is_compressed(self):
+ return self.compressed
- is_valid - Corresponds to CPubKey.IsValid()
- is_fullyvalid - Corresponds to CPubKey.IsFullyValid()
- is_compressed - Corresponds to CPubKey.IsCompressed()
- """
+ @property
+ def is_valid(self):
+ return self.valid
+
+ def get_bytes(self):
+ assert(self.valid)
+ p = SECP256K1.affine(self.p)
+ if p is None:
+ return None
+ if self.compressed:
+ return bytes([0x02 + (p[1] & 1)]) + p[0].to_bytes(32, 'big')
+ else:
+ return bytes([0x04]) + p[0].to_bytes(32, 'big') + p[1].to_bytes(32, 'big')
+
+ def verify_ecdsa(self, sig, msg, low_s=True):
+ """Verify a strictly DER-encoded ECDSA signature against this pubkey.
+
+ See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
+ ECDSA verifier algorithm"""
+ assert(self.valid)
+
+ # Extract r and s from the DER formatted signature. Return false for
+ # any DER encoding errors.
+ if (sig[1] + 2 != len(sig)):
+ return False
+ if (len(sig) < 4):
+ return False
+ if (sig[0] != 0x30):
+ return False
+ if (sig[2] != 0x02):
+ return False
+ rlen = sig[3]
+ if (len(sig) < 6 + rlen):
+ return False
+ if rlen < 1 or rlen > 33:
+ return False
+ if sig[4] >= 0x80:
+ return False
+ if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)):
+ return False
+ r = int.from_bytes(sig[4:4+rlen], 'big')
+ if (sig[4+rlen] != 0x02):
+ return False
+ slen = sig[5+rlen]
+ if slen < 1 or slen > 33:
+ return False
+ if (len(sig) != 6 + rlen + slen):
+ return False
+ if sig[6+rlen] >= 0x80:
+ return False
+ if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)):
+ return False
+ s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big')
+
+ # Verify that r and s are within the group order
+ if r < 1 or s < 1 or r >= SECP256K1_ORDER or s >= SECP256K1_ORDER:
+ return False
+ if low_s and s >= SECP256K1_ORDER_HALF:
+ return False
+ z = int.from_bytes(msg, 'big')
+
+ # Run verifier algorithm on r, s
+ w = modinv(s, SECP256K1_ORDER)
+ u1 = z*w % SECP256K1_ORDER
+ u2 = r*w % SECP256K1_ORDER
+ R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, u1), (self.p, u2)]))
+ if R is None or R[0] != r:
+ return False
+ return True
+
+class ECKey():
+ """A secp256k1 private key"""
- def __new__(cls, buf, _cec_key=None):
- self = super(CPubKey, cls).__new__(cls, buf)
- if _cec_key is None:
- _cec_key = CECKey()
- self._cec_key = _cec_key
- self.is_fullyvalid = _cec_key.set_pubkey(self) != 0
- return self
+ def __init__(self):
+ self.valid = False
+
+ def set(self, secret, compressed):
+ """Construct a private key object with given 32-byte secret and compressed flag."""
+ assert(len(secret) == 32)
+ secret = int.from_bytes(secret, 'big')
+ self.valid = (secret > 0 and secret < SECP256K1_ORDER)
+ if self.valid:
+ self.secret = secret
+ self.compressed = compressed
+
+ def generate(self, compressed=True):
+ """Generate a random private key (compressed or uncompressed)."""
+ self.set(random.randrange(1, SECP256K1_ORDER).to_bytes(32, 'big'), compressed)
+
+ def get_bytes(self):
+ """Retrieve the 32-byte representation of this key."""
+ assert(self.valid)
+ return self.secret.to_bytes(32, 'big')
@property
def is_valid(self):
- return len(self) > 0
+ return self.valid
@property
def is_compressed(self):
- return len(self) == 33
-
- def verify(self, hash, sig):
- return self._cec_key.verify(hash, sig)
-
- def __str__(self):
- return repr(self)
-
- def __repr__(self):
- return '%s(%s)' % (self.__class__.__name__, super(CPubKey, self).__repr__())
+ return self.compressed
+ def get_pubkey(self):
+ """Compute an ECPubKey object for this secret key."""
+ assert(self.valid)
+ ret = ECPubKey()
+ p = SECP256K1.mul([(SECP256K1_G, self.secret)])
+ ret.p = p
+ ret.valid = True
+ ret.compressed = self.compressed
+ return ret
+
+ def sign_ecdsa(self, msg, low_s=True):
+ """Construct a DER-encoded ECDSA signature with this key.
+
+ See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
+ ECDSA signer algorithm."""
+ assert(self.valid)
+ z = int.from_bytes(msg, 'big')
+ # Note: no RFC6979, but a simple random nonce (some tests rely on distinct transactions for the same operation)
+ k = random.randrange(1, SECP256K1_ORDER)
+ R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, k)]))
+ r = R[0] % SECP256K1_ORDER
+ s = (modinv(k, SECP256K1_ORDER) * (z + self.secret * r)) % SECP256K1_ORDER
+ if low_s and s > SECP256K1_ORDER_HALF:
+ s = SECP256K1_ORDER - s
+ # Represent in DER format. The byte representations of r and s have
+ # length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33
+ # bytes).
+ rb = r.to_bytes((r.bit_length() + 8) // 8, 'big')
+ sb = s.to_bytes((s.bit_length() + 8) // 8, 'big')
+ return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb
diff --git a/test/functional/test_framework/mininode.py b/test/functional/test_framework/mininode.py
index ac7cc068bd..6afdd50176 100755
--- a/test/functional/test_framework/mininode.py
+++ b/test/functional/test_framework/mininode.py
@@ -364,6 +364,14 @@ class P2PInterface(P2PConnection):
# Message receiving helper methods
+ def wait_for_tx(self, txid, timeout=60):
+ def test_function():
+ if not self.last_message.get('tx'):
+ return False
+ return self.last_message['tx'].tx.rehash() == txid
+
+ wait_until(test_function, timeout=timeout, lock=mininode_lock)
+
def wait_for_block(self, blockhash, timeout=60):
test_function = lambda: self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash
wait_until(test_function, timeout=timeout, lock=mininode_lock)
diff --git a/test/functional/test_framework/util.py b/test/functional/test_framework/util.py
index fef9982412..87e2dbaf16 100644
--- a/test/functional/test_framework/util.py
+++ b/test/functional/test_framework/util.py
@@ -219,7 +219,7 @@ def wait_until(predicate, *, attempts=float('inf'), timeout=float('inf'), lock=N
time.sleep(0.05)
# Print the cause of the timeout
- predicate_source = inspect.getsourcelines(predicate)
+ predicate_source = "''''\n" + inspect.getsource(predicate) + "'''"
logger.error("wait_until() failed. Predicate: {}".format(predicate_source))
if attempt >= attempts:
raise AssertionError("Predicate {} not true after {} attempts".format(predicate_source, attempts))