aboutsummaryrefslogtreecommitdiff
path: root/src/bench/crypto_hash.cpp
diff options
context:
space:
mode:
authorWladimir J. van der Laan <laanwj@protonmail.com>2020-07-30 15:20:19 +0200
committerWladimir J. van der Laan <laanwj@protonmail.com>2020-07-30 15:34:17 +0200
commit4ebe2f6e752c453ff572eda4a108e747d6586c97 (patch)
tree59fdc087589ab55e8ade08e91fadeb150bd9733f /src/bench/crypto_hash.cpp
parent2a784723f0c0e642353dc74ec6aef4d5f8345044 (diff)
parent78c312c983255e15fc274de2368a2ec13ce81cbf (diff)
downloadbitcoin-4ebe2f6e752c453ff572eda4a108e747d6586c97.tar.xz
Merge #18011: Replace current benchmarking framework with nanobench
78c312c983255e15fc274de2368a2ec13ce81cbf Replace current benchmarking framework with nanobench (Martin Ankerl) Pull request description: Replace current benchmarking framework with nanobench This replaces the current benchmarking framework with nanobench [1], an MIT licensed single-header benchmarking library, of which I am the autor. This has in my opinion several advantages, especially on Linux: * fast: Running all benchmarks takes ~6 seconds instead of 4m13s on an Intel i7-8700 CPU @ 3.20GHz. * accurate: I ran e.g. the benchmark for SipHash_32b 10 times and calculate standard deviation / mean = coefficient of variation: * 0.57% CV for old benchmarking framework * 0.20% CV for nanobench So the benchmark results with nanobench seem to vary less than with the old framework. * It automatically determines runtime based on clock precision, no need to specify number of evaluations. * measure instructions, cycles, branches, instructions per cycle, branch misses (only Linux, when performance counters are available) * output in markdown table format. * Warn about unstable environment (frequency scaling, turbo, ...) * For better profiling, it is possible to set the environment variable NANOBENCH_ENDLESS to force endless running of a particular benchmark without the need to recompile. This makes it to e.g. run "perf top" and look at hotspots. Here is an example copy & pasted from the terminal output: | ns/byte | byte/s | err% | ins/byte | cyc/byte | IPC | bra/byte | miss% | total | benchmark |--------------------:|--------------------:|--------:|----------------:|----------------:|-------:|---------------:|--------:|----------:|:---------- | 2.52 | 396,529,415.94 | 0.6% | 25.42 | 8.02 | 3.169 | 0.06 | 0.0% | 0.03 | `bench/crypto_hash.cpp RIPEMD160` | 1.87 | 535,161,444.83 | 0.3% | 21.36 | 5.95 | 3.589 | 0.06 | 0.0% | 0.02 | `bench/crypto_hash.cpp SHA1` | 3.22 | 310,344,174.79 | 1.1% | 36.80 | 10.22 | 3.601 | 0.09 | 0.0% | 0.04 | `bench/crypto_hash.cpp SHA256` | 2.01 | 496,375,796.23 | 0.0% | 18.72 | 6.43 | 2.911 | 0.01 | 1.0% | 0.00 | `bench/crypto_hash.cpp SHA256D64_1024` | 7.23 | 138,263,519.35 | 0.1% | 82.66 | 23.11 | 3.577 | 1.63 | 0.1% | 0.00 | `bench/crypto_hash.cpp SHA256_32b` | 3.04 | 328,780,166.40 | 0.3% | 35.82 | 9.69 | 3.696 | 0.03 | 0.0% | 0.03 | `bench/crypto_hash.cpp SHA512` [1] https://github.com/martinus/nanobench ACKs for top commit: laanwj: ACK 78c312c983255e15fc274de2368a2ec13ce81cbf Tree-SHA512: 9e18770b18b6f95a7d0105a4a5497d31cf4eb5efe6574f4482f6f1b4c88d7e0946b9a4a1e9e8e6ecbf41a3f2d7571240677dcb45af29a6f0584e89b25f32e49e
Diffstat (limited to 'src/bench/crypto_hash.cpp')
-rw-r--r--src/bench/crypto_hash.cpp68
1 files changed, 36 insertions, 32 deletions
diff --git a/src/bench/crypto_hash.cpp b/src/bench/crypto_hash.cpp
index ddcef5121e..36be86bcc8 100644
--- a/src/bench/crypto_hash.cpp
+++ b/src/bench/crypto_hash.cpp
@@ -16,88 +16,92 @@
/* Number of bytes to hash per iteration */
static const uint64_t BUFFER_SIZE = 1000*1000;
-static void RIPEMD160(benchmark::State& state)
+static void RIPEMD160(benchmark::Bench& bench)
{
uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
- while (state.KeepRunning())
+ bench.batch(in.size()).unit("byte").run([&] {
CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
+ });
}
-static void SHA1(benchmark::State& state)
+static void SHA1(benchmark::Bench& bench)
{
uint8_t hash[CSHA1::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
- while (state.KeepRunning())
+ bench.batch(in.size()).unit("byte").run([&] {
CSHA1().Write(in.data(), in.size()).Finalize(hash);
+ });
}
-static void SHA256(benchmark::State& state)
+static void SHA256(benchmark::Bench& bench)
{
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
- while (state.KeepRunning())
+ bench.batch(in.size()).unit("byte").run([&] {
CSHA256().Write(in.data(), in.size()).Finalize(hash);
+ });
}
-static void SHA256_32b(benchmark::State& state)
+static void SHA256_32b(benchmark::Bench& bench)
{
std::vector<uint8_t> in(32,0);
- while (state.KeepRunning()) {
+ bench.batch(in.size()).unit("byte").run([&] {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
- }
+ });
}
-static void SHA256D64_1024(benchmark::State& state)
+static void SHA256D64_1024(benchmark::Bench& bench)
{
std::vector<uint8_t> in(64 * 1024, 0);
- while (state.KeepRunning()) {
+ bench.batch(in.size()).unit("byte").run([&] {
SHA256D64(in.data(), in.data(), 1024);
- }
+ });
}
-static void SHA512(benchmark::State& state)
+static void SHA512(benchmark::Bench& bench)
{
uint8_t hash[CSHA512::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
- while (state.KeepRunning())
+ bench.batch(in.size()).unit("byte").run([&] {
CSHA512().Write(in.data(), in.size()).Finalize(hash);
+ });
}
-static void SipHash_32b(benchmark::State& state)
+static void SipHash_32b(benchmark::Bench& bench)
{
uint256 x;
uint64_t k1 = 0;
- while (state.KeepRunning()) {
+ bench.run([&] {
*((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
- }
+ });
}
-static void FastRandom_32bit(benchmark::State& state)
+static void FastRandom_32bit(benchmark::Bench& bench)
{
FastRandomContext rng(true);
- while (state.KeepRunning()) {
+ bench.run([&] {
rng.rand32();
- }
+ });
}
-static void FastRandom_1bit(benchmark::State& state)
+static void FastRandom_1bit(benchmark::Bench& bench)
{
FastRandomContext rng(true);
- while (state.KeepRunning()) {
+ bench.run([&] {
rng.randbool();
- }
+ });
}
-BENCHMARK(RIPEMD160, 440);
-BENCHMARK(SHA1, 570);
-BENCHMARK(SHA256, 340);
-BENCHMARK(SHA512, 330);
+BENCHMARK(RIPEMD160);
+BENCHMARK(SHA1);
+BENCHMARK(SHA256);
+BENCHMARK(SHA512);
-BENCHMARK(SHA256_32b, 4700 * 1000);
-BENCHMARK(SipHash_32b, 40 * 1000 * 1000);
-BENCHMARK(SHA256D64_1024, 7400);
-BENCHMARK(FastRandom_32bit, 110 * 1000 * 1000);
-BENCHMARK(FastRandom_1bit, 440 * 1000 * 1000);
+BENCHMARK(SHA256_32b);
+BENCHMARK(SipHash_32b);
+BENCHMARK(SHA256D64_1024);
+BENCHMARK(FastRandom_32bit);
+BENCHMARK(FastRandom_1bit);