aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAndrew Chow <github@achow101.com>2023-08-08 10:45:06 -0400
committerAndrew Chow <github@achow101.com>2023-08-14 17:38:27 -0400
commit145f36ec81e79d2e391847520364c2420ef0e0e8 (patch)
treeea52e6f46958a2fa8aea5ef87a16216639df8cb0
parent86ea8bed5473f400f7a93fcc455393a574a2f319 (diff)
downloadbitcoin-145f36ec81e79d2e391847520364c2420ef0e0e8.tar.xz
Move Taproot{SpendData/Builder} to signingprovider.{h/cpp}
TaprootSpendData and TaprootBuilder are used in signing in SigningProvider contexts, so they should live near that.
-rw-r--r--src/psbt.cpp1
-rw-r--r--src/script/descriptor.cpp1
-rw-r--r--src/script/sign.h1
-rw-r--r--src/script/signingprovider.cpp295
-rw-r--r--src/script/signingprovider.h132
-rw-r--r--src/script/standard.cpp295
-rw-r--r--src/script/standard.h132
-rw-r--r--src/wallet/test/ismine_tests.cpp1
8 files changed, 431 insertions, 427 deletions
diff --git a/src/psbt.cpp b/src/psbt.cpp
index 009ed966ed..7ec9b9c136 100644
--- a/src/psbt.cpp
+++ b/src/psbt.cpp
@@ -5,6 +5,7 @@
#include <psbt.h>
#include <policy/policy.h>
+#include <script/signingprovider.h>
#include <util/check.h>
#include <util/strencodings.h>
diff --git a/src/script/descriptor.cpp b/src/script/descriptor.cpp
index 09ded5fc61..3d8497ef19 100644
--- a/src/script/descriptor.cpp
+++ b/src/script/descriptor.cpp
@@ -9,6 +9,7 @@
#include <pubkey.h>
#include <script/miniscript.h>
#include <script/script.h>
+#include <script/signingprovider.h>
#include <script/standard.h>
#include <uint256.h>
diff --git a/src/script/sign.h b/src/script/sign.h
index f46bc55992..b8806876a2 100644
--- a/src/script/sign.h
+++ b/src/script/sign.h
@@ -13,6 +13,7 @@
#include <script/interpreter.h>
#include <script/keyorigin.h>
#include <script/standard.h>
+#include <script/signingprovider.h>
#include <uint256.h>
class CKey;
diff --git a/src/script/signingprovider.cpp b/src/script/signingprovider.cpp
index fb5ae79c19..248305c82e 100644
--- a/src/script/signingprovider.cpp
+++ b/src/script/signingprovider.cpp
@@ -4,6 +4,7 @@
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <script/keyorigin.h>
+#include <script/interpreter.h>
#include <script/signingprovider.h>
#include <script/standard.h>
@@ -225,3 +226,297 @@ CKeyID GetKeyForDestination(const SigningProvider& store, const CTxDestination&
}
return CKeyID();
}
+/*static*/ TaprootBuilder::NodeInfo TaprootBuilder::Combine(NodeInfo&& a, NodeInfo&& b)
+{
+ NodeInfo ret;
+ /* Iterate over all tracked leaves in a, add b's hash to their Merkle branch, and move them to ret. */
+ for (auto& leaf : a.leaves) {
+ leaf.merkle_branch.push_back(b.hash);
+ ret.leaves.emplace_back(std::move(leaf));
+ }
+ /* Iterate over all tracked leaves in b, add a's hash to their Merkle branch, and move them to ret. */
+ for (auto& leaf : b.leaves) {
+ leaf.merkle_branch.push_back(a.hash);
+ ret.leaves.emplace_back(std::move(leaf));
+ }
+ ret.hash = ComputeTapbranchHash(a.hash, b.hash);
+ return ret;
+}
+
+void TaprootSpendData::Merge(TaprootSpendData other)
+{
+ // TODO: figure out how to better deal with conflicting information
+ // being merged.
+ if (internal_key.IsNull() && !other.internal_key.IsNull()) {
+ internal_key = other.internal_key;
+ }
+ if (merkle_root.IsNull() && !other.merkle_root.IsNull()) {
+ merkle_root = other.merkle_root;
+ }
+ for (auto& [key, control_blocks] : other.scripts) {
+ scripts[key].merge(std::move(control_blocks));
+ }
+}
+
+void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth)
+{
+ assert(depth >= 0 && (size_t)depth <= TAPROOT_CONTROL_MAX_NODE_COUNT);
+ /* We cannot insert a leaf at a lower depth while a deeper branch is unfinished. Doing
+ * so would mean the Add() invocations do not correspond to a DFS traversal of a
+ * binary tree. */
+ if ((size_t)depth + 1 < m_branch.size()) {
+ m_valid = false;
+ return;
+ }
+ /* As long as an entry in the branch exists at the specified depth, combine it and propagate up.
+ * The 'node' variable is overwritten here with the newly combined node. */
+ while (m_valid && m_branch.size() > (size_t)depth && m_branch[depth].has_value()) {
+ node = Combine(std::move(node), std::move(*m_branch[depth]));
+ m_branch.pop_back();
+ if (depth == 0) m_valid = false; /* Can't propagate further up than the root */
+ --depth;
+ }
+ if (m_valid) {
+ /* Make sure the branch is big enough to place the new node. */
+ if (m_branch.size() <= (size_t)depth) m_branch.resize((size_t)depth + 1);
+ assert(!m_branch[depth].has_value());
+ m_branch[depth] = std::move(node);
+ }
+}
+
+/*static*/ bool TaprootBuilder::ValidDepths(const std::vector<int>& depths)
+{
+ std::vector<bool> branch;
+ for (int depth : depths) {
+ // This inner loop corresponds to effectively the same logic on branch
+ // as what Insert() performs on the m_branch variable. Instead of
+ // storing a NodeInfo object, just remember whether or not there is one
+ // at that depth.
+ if (depth < 0 || (size_t)depth > TAPROOT_CONTROL_MAX_NODE_COUNT) return false;
+ if ((size_t)depth + 1 < branch.size()) return false;
+ while (branch.size() > (size_t)depth && branch[depth]) {
+ branch.pop_back();
+ if (depth == 0) return false;
+ --depth;
+ }
+ if (branch.size() <= (size_t)depth) branch.resize((size_t)depth + 1);
+ assert(!branch[depth]);
+ branch[depth] = true;
+ }
+ // And this check corresponds to the IsComplete() check on m_branch.
+ return branch.size() == 0 || (branch.size() == 1 && branch[0]);
+}
+
+TaprootBuilder& TaprootBuilder::Add(int depth, Span<const unsigned char> script, int leaf_version, bool track)
+{
+ assert((leaf_version & ~TAPROOT_LEAF_MASK) == 0);
+ if (!IsValid()) return *this;
+ /* Construct NodeInfo object with leaf hash and (if track is true) also leaf information. */
+ NodeInfo node;
+ node.hash = ComputeTapleafHash(leaf_version, script);
+ if (track) node.leaves.emplace_back(LeafInfo{std::vector<unsigned char>(script.begin(), script.end()), leaf_version, {}});
+ /* Insert into the branch. */
+ Insert(std::move(node), depth);
+ return *this;
+}
+
+TaprootBuilder& TaprootBuilder::AddOmitted(int depth, const uint256& hash)
+{
+ if (!IsValid()) return *this;
+ /* Construct NodeInfo object with the hash directly, and insert it into the branch. */
+ NodeInfo node;
+ node.hash = hash;
+ Insert(std::move(node), depth);
+ return *this;
+}
+
+TaprootBuilder& TaprootBuilder::Finalize(const XOnlyPubKey& internal_key)
+{
+ /* Can only call this function when IsComplete() is true. */
+ assert(IsComplete());
+ m_internal_key = internal_key;
+ auto ret = m_internal_key.CreateTapTweak(m_branch.size() == 0 ? nullptr : &m_branch[0]->hash);
+ assert(ret.has_value());
+ std::tie(m_output_key, m_parity) = *ret;
+ return *this;
+}
+
+WitnessV1Taproot TaprootBuilder::GetOutput() { return WitnessV1Taproot{m_output_key}; }
+
+TaprootSpendData TaprootBuilder::GetSpendData() const
+{
+ assert(IsComplete());
+ assert(m_output_key.IsFullyValid());
+ TaprootSpendData spd;
+ spd.merkle_root = m_branch.size() == 0 ? uint256() : m_branch[0]->hash;
+ spd.internal_key = m_internal_key;
+ if (m_branch.size()) {
+ // If any script paths exist, they have been combined into the root m_branch[0]
+ // by now. Compute the control block for each of its tracked leaves, and put them in
+ // spd.scripts.
+ for (const auto& leaf : m_branch[0]->leaves) {
+ std::vector<unsigned char> control_block;
+ control_block.resize(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size());
+ control_block[0] = leaf.leaf_version | (m_parity ? 1 : 0);
+ std::copy(m_internal_key.begin(), m_internal_key.end(), control_block.begin() + 1);
+ if (leaf.merkle_branch.size()) {
+ std::copy(leaf.merkle_branch[0].begin(),
+ leaf.merkle_branch[0].begin() + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size(),
+ control_block.begin() + TAPROOT_CONTROL_BASE_SIZE);
+ }
+ spd.scripts[{leaf.script, leaf.leaf_version}].insert(std::move(control_block));
+ }
+ }
+ return spd;
+}
+
+std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output)
+{
+ // Verify that the output matches the assumed Merkle root and internal key.
+ auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root);
+ if (!tweak || tweak->first != output) return std::nullopt;
+ // If the Merkle root is 0, the tree is empty, and we're done.
+ std::vector<std::tuple<int, std::vector<unsigned char>, int>> ret;
+ if (spenddata.merkle_root.IsNull()) return ret;
+
+ /** Data structure to represent the nodes of the tree we're going to build. */
+ struct TreeNode {
+ /** Hash of this node, if known; 0 otherwise. */
+ uint256 hash;
+ /** The left and right subtrees (note that their order is irrelevant). */
+ std::unique_ptr<TreeNode> sub[2];
+ /** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair.
+ * nullptr otherwise. */
+ const std::pair<std::vector<unsigned char>, int>* leaf = nullptr;
+ /** Whether or not this node has been explored (is known to be a leaf, or known to have children). */
+ bool explored = false;
+ /** Whether or not this node is an inner node (unknown until explored = true). */
+ bool inner;
+ /** Whether or not we have produced output for this subtree. */
+ bool done = false;
+ };
+
+ // Build tree from the provided branches.
+ TreeNode root;
+ root.hash = spenddata.merkle_root;
+ for (const auto& [key, control_blocks] : spenddata.scripts) {
+ const auto& [script, leaf_ver] = key;
+ for (const auto& control : control_blocks) {
+ // Skip script records with nonsensical leaf version.
+ if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue;
+ // Skip script records with invalid control block sizes.
+ if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE ||
+ ((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue;
+ // Skip script records that don't match the control block.
+ if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue;
+ // Skip script records that don't match the provided Merkle root.
+ const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script);
+ const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash);
+ if (merkle_root != spenddata.merkle_root) continue;
+
+ TreeNode* node = &root;
+ size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
+ for (size_t depth = 0; depth < levels; ++depth) {
+ // Can't descend into a node which we already know is a leaf.
+ if (node->explored && !node->inner) return std::nullopt;
+
+ // Extract partner hash from Merkle branch in control block.
+ uint256 hash;
+ std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE,
+ control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE,
+ hash.begin());
+
+ if (node->sub[0]) {
+ // Descend into the existing left or right branch.
+ bool desc = false;
+ for (int i = 0; i < 2; ++i) {
+ if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) {
+ node->sub[i]->hash = hash;
+ node = &*node->sub[1-i];
+ desc = true;
+ break;
+ }
+ }
+ if (!desc) return std::nullopt; // This probably requires a hash collision to hit.
+ } else {
+ // We're in an unexplored node. Create subtrees and descend.
+ node->explored = true;
+ node->inner = true;
+ node->sub[0] = std::make_unique<TreeNode>();
+ node->sub[1] = std::make_unique<TreeNode>();
+ node->sub[1]->hash = hash;
+ node = &*node->sub[0];
+ }
+ }
+ // Cannot turn a known inner node into a leaf.
+ if (node->sub[0]) return std::nullopt;
+ node->explored = true;
+ node->inner = false;
+ node->leaf = &key;
+ node->hash = leaf_hash;
+ }
+ }
+
+ // Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid
+ // overflowing the call stack (the tree may be 128 levels deep).
+ std::vector<TreeNode*> stack{&root};
+ while (!stack.empty()) {
+ TreeNode& node = *stack.back();
+ if (!node.explored) {
+ // Unexplored node, which means the tree is incomplete.
+ return std::nullopt;
+ } else if (!node.inner) {
+ // Leaf node; produce output.
+ ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second);
+ node.done = true;
+ stack.pop_back();
+ } else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() &&
+ ComputeTapbranchHash(node.sub[1]->hash, node.sub[1]->hash) == node.hash) {
+ // Whenever there are nodes with two identical subtrees under it, we run into a problem:
+ // the control blocks for the leaves underneath those will be identical as well, and thus
+ // they will all be matched to the same path in the tree. The result is that at the location
+ // where the duplicate occurred, the left child will contain a normal tree that can be explored
+ // and processed, but the right one will remain unexplored.
+ //
+ // This situation can be detected, by encountering an inner node with unexplored right subtree
+ // with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash.
+ //
+ // To deal with this, simply process the left tree a second time (set its done flag to false;
+ // noting that the done flag of its children have already been set to false after processing
+ // those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored)
+ // subtree to true.
+ node.sub[0]->done = false;
+ node.sub[1]->done = true;
+ } else if (node.sub[0]->done && node.sub[1]->done) {
+ // An internal node which we're finished with.
+ node.sub[0]->done = false;
+ node.sub[1]->done = false;
+ node.done = true;
+ stack.pop_back();
+ } else if (!node.sub[0]->done) {
+ // An internal node whose left branch hasn't been processed yet. Do so first.
+ stack.push_back(&*node.sub[0]);
+ } else if (!node.sub[1]->done) {
+ // An internal node whose right branch hasn't been processed yet. Do so first.
+ stack.push_back(&*node.sub[1]);
+ }
+ }
+
+ return ret;
+}
+
+std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> TaprootBuilder::GetTreeTuples() const
+{
+ assert(IsComplete());
+ std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> tuples;
+ if (m_branch.size()) {
+ const auto& leaves = m_branch[0]->leaves;
+ for (const auto& leaf : leaves) {
+ assert(leaf.merkle_branch.size() <= TAPROOT_CONTROL_MAX_NODE_COUNT);
+ uint8_t depth = (uint8_t)leaf.merkle_branch.size();
+ uint8_t leaf_ver = (uint8_t)leaf.leaf_version;
+ tuples.push_back(std::make_tuple(depth, leaf_ver, leaf.script));
+ }
+ }
+ return tuples;
+}
diff --git a/src/script/signingprovider.h b/src/script/signingprovider.h
index a5bbcff6a0..26886e0d57 100644
--- a/src/script/signingprovider.h
+++ b/src/script/signingprovider.h
@@ -14,6 +14,138 @@
#include <script/standard.h>
#include <sync.h>
+struct ShortestVectorFirstComparator
+{
+ bool operator()(const std::vector<unsigned char>& a, const std::vector<unsigned char>& b) const
+ {
+ if (a.size() < b.size()) return true;
+ if (a.size() > b.size()) return false;
+ return a < b;
+ }
+};
+
+struct TaprootSpendData
+{
+ /** The BIP341 internal key. */
+ XOnlyPubKey internal_key;
+ /** The Merkle root of the script tree (0 if no scripts). */
+ uint256 merkle_root;
+ /** Map from (script, leaf_version) to (sets of) control blocks.
+ * More than one control block for a given script is only possible if it
+ * appears in multiple branches of the tree. We keep them all so that
+ * inference can reconstruct the full tree. Within each set, the control
+ * blocks are sorted by size, so that the signing logic can easily
+ * prefer the cheapest one. */
+ std::map<std::pair<std::vector<unsigned char>, int>, std::set<std::vector<unsigned char>, ShortestVectorFirstComparator>> scripts;
+ /** Merge other TaprootSpendData (for the same scriptPubKey) into this. */
+ void Merge(TaprootSpendData other);
+};
+
+/** Utility class to construct Taproot outputs from internal key and script tree. */
+class TaprootBuilder
+{
+private:
+ /** Information about a tracked leaf in the Merkle tree. */
+ struct LeafInfo
+ {
+ std::vector<unsigned char> script; //!< The script.
+ int leaf_version; //!< The leaf version for that script.
+ std::vector<uint256> merkle_branch; //!< The hashing partners above this leaf.
+ };
+
+ /** Information associated with a node in the Merkle tree. */
+ struct NodeInfo
+ {
+ /** Merkle hash of this node. */
+ uint256 hash;
+ /** Tracked leaves underneath this node (either from the node itself, or its children).
+ * The merkle_branch field of each is the partners to get to *this* node. */
+ std::vector<LeafInfo> leaves;
+ };
+ /** Whether the builder is in a valid state so far. */
+ bool m_valid = true;
+
+ /** The current state of the builder.
+ *
+ * For each level in the tree, one NodeInfo object may be present. m_branch[0]
+ * is information about the root; further values are for deeper subtrees being
+ * explored.
+ *
+ * For every right branch taken to reach the position we're currently
+ * working in, there will be a (non-nullopt) entry in m_branch corresponding
+ * to the left branch at that level.
+ *
+ * For example, imagine this tree: - N0 -
+ * / \
+ * N1 N2
+ * / \ / \
+ * A B C N3
+ * / \
+ * D E
+ *
+ * Initially, m_branch is empty. After processing leaf A, it would become
+ * {nullopt, nullopt, A}. When processing leaf B, an entry at level 2 already
+ * exists, and it would thus be combined with it to produce a level 1 one,
+ * resulting in {nullopt, N1}. Adding C and D takes us to {nullopt, N1, C}
+ * and {nullopt, N1, C, D} respectively. When E is processed, it is combined
+ * with D, and then C, and then N1, to produce the root, resulting in {N0}.
+ *
+ * This structure allows processing with just O(log n) overhead if the leaves
+ * are computed on the fly.
+ *
+ * As an invariant, there can never be nullopt entries at the end. There can
+ * also not be more than 128 entries (as that would mean more than 128 levels
+ * in the tree). The depth of newly added entries will always be at least
+ * equal to the current size of m_branch (otherwise it does not correspond
+ * to a depth-first traversal of a tree). m_branch is only empty if no entries
+ * have ever be processed. m_branch having length 1 corresponds to being done.
+ */
+ std::vector<std::optional<NodeInfo>> m_branch;
+
+ XOnlyPubKey m_internal_key; //!< The internal key, set when finalizing.
+ XOnlyPubKey m_output_key; //!< The output key, computed when finalizing.
+ bool m_parity; //!< The tweak parity, computed when finalizing.
+
+ /** Combine information about a parent Merkle tree node from its child nodes. */
+ static NodeInfo Combine(NodeInfo&& a, NodeInfo&& b);
+ /** Insert information about a node at a certain depth, and propagate information up. */
+ void Insert(NodeInfo&& node, int depth);
+
+public:
+ /** Add a new script at a certain depth in the tree. Add() operations must be called
+ * in depth-first traversal order of binary tree. If track is true, it will be included in
+ * the GetSpendData() output. */
+ TaprootBuilder& Add(int depth, Span<const unsigned char> script, int leaf_version, bool track = true);
+ /** Like Add(), but for a Merkle node with a given hash to the tree. */
+ TaprootBuilder& AddOmitted(int depth, const uint256& hash);
+ /** Finalize the construction. Can only be called when IsComplete() is true.
+ internal_key.IsFullyValid() must be true. */
+ TaprootBuilder& Finalize(const XOnlyPubKey& internal_key);
+
+ /** Return true if so far all input was valid. */
+ bool IsValid() const { return m_valid; }
+ /** Return whether there were either no leaves, or the leaves form a Huffman tree. */
+ bool IsComplete() const { return m_valid && (m_branch.size() == 0 || (m_branch.size() == 1 && m_branch[0].has_value())); }
+ /** Compute scriptPubKey (after Finalize()). */
+ WitnessV1Taproot GetOutput();
+ /** Check if a list of depths is legal (will lead to IsComplete()). */
+ static bool ValidDepths(const std::vector<int>& depths);
+ /** Compute spending data (after Finalize()). */
+ TaprootSpendData GetSpendData() const;
+ /** Returns a vector of tuples representing the depth, leaf version, and script */
+ std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> GetTreeTuples() const;
+ /** Returns true if there are any tapscripts */
+ bool HasScripts() const { return !m_branch.empty(); }
+};
+
+/** Given a TaprootSpendData and the output key, reconstruct its script tree.
+ *
+ * If the output doesn't match the spenddata, or if the data in spenddata is incomplete,
+ * std::nullopt is returned. Otherwise, a vector of (depth, script, leaf_ver) tuples is
+ * returned, corresponding to a depth-first traversal of the script tree.
+ */
+std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output);
+
/** An interface to be implemented by keystores that support signing. */
class SigningProvider
{
diff --git a/src/script/standard.cpp b/src/script/standard.cpp
index 6f5145a74b..01b074e27c 100644
--- a/src/script/standard.cpp
+++ b/src/script/standard.cpp
@@ -358,298 +358,3 @@ CScript GetScriptForMultisig(int nRequired, const std::vector<CPubKey>& keys)
bool IsValidDestination(const CTxDestination& dest) {
return dest.index() != 0;
}
-
-/*static*/ TaprootBuilder::NodeInfo TaprootBuilder::Combine(NodeInfo&& a, NodeInfo&& b)
-{
- NodeInfo ret;
- /* Iterate over all tracked leaves in a, add b's hash to their Merkle branch, and move them to ret. */
- for (auto& leaf : a.leaves) {
- leaf.merkle_branch.push_back(b.hash);
- ret.leaves.emplace_back(std::move(leaf));
- }
- /* Iterate over all tracked leaves in b, add a's hash to their Merkle branch, and move them to ret. */
- for (auto& leaf : b.leaves) {
- leaf.merkle_branch.push_back(a.hash);
- ret.leaves.emplace_back(std::move(leaf));
- }
- ret.hash = ComputeTapbranchHash(a.hash, b.hash);
- return ret;
-}
-
-void TaprootSpendData::Merge(TaprootSpendData other)
-{
- // TODO: figure out how to better deal with conflicting information
- // being merged.
- if (internal_key.IsNull() && !other.internal_key.IsNull()) {
- internal_key = other.internal_key;
- }
- if (merkle_root.IsNull() && !other.merkle_root.IsNull()) {
- merkle_root = other.merkle_root;
- }
- for (auto& [key, control_blocks] : other.scripts) {
- scripts[key].merge(std::move(control_blocks));
- }
-}
-
-void TaprootBuilder::Insert(TaprootBuilder::NodeInfo&& node, int depth)
-{
- assert(depth >= 0 && (size_t)depth <= TAPROOT_CONTROL_MAX_NODE_COUNT);
- /* We cannot insert a leaf at a lower depth while a deeper branch is unfinished. Doing
- * so would mean the Add() invocations do not correspond to a DFS traversal of a
- * binary tree. */
- if ((size_t)depth + 1 < m_branch.size()) {
- m_valid = false;
- return;
- }
- /* As long as an entry in the branch exists at the specified depth, combine it and propagate up.
- * The 'node' variable is overwritten here with the newly combined node. */
- while (m_valid && m_branch.size() > (size_t)depth && m_branch[depth].has_value()) {
- node = Combine(std::move(node), std::move(*m_branch[depth]));
- m_branch.pop_back();
- if (depth == 0) m_valid = false; /* Can't propagate further up than the root */
- --depth;
- }
- if (m_valid) {
- /* Make sure the branch is big enough to place the new node. */
- if (m_branch.size() <= (size_t)depth) m_branch.resize((size_t)depth + 1);
- assert(!m_branch[depth].has_value());
- m_branch[depth] = std::move(node);
- }
-}
-
-/*static*/ bool TaprootBuilder::ValidDepths(const std::vector<int>& depths)
-{
- std::vector<bool> branch;
- for (int depth : depths) {
- // This inner loop corresponds to effectively the same logic on branch
- // as what Insert() performs on the m_branch variable. Instead of
- // storing a NodeInfo object, just remember whether or not there is one
- // at that depth.
- if (depth < 0 || (size_t)depth > TAPROOT_CONTROL_MAX_NODE_COUNT) return false;
- if ((size_t)depth + 1 < branch.size()) return false;
- while (branch.size() > (size_t)depth && branch[depth]) {
- branch.pop_back();
- if (depth == 0) return false;
- --depth;
- }
- if (branch.size() <= (size_t)depth) branch.resize((size_t)depth + 1);
- assert(!branch[depth]);
- branch[depth] = true;
- }
- // And this check corresponds to the IsComplete() check on m_branch.
- return branch.size() == 0 || (branch.size() == 1 && branch[0]);
-}
-
-TaprootBuilder& TaprootBuilder::Add(int depth, Span<const unsigned char> script, int leaf_version, bool track)
-{
- assert((leaf_version & ~TAPROOT_LEAF_MASK) == 0);
- if (!IsValid()) return *this;
- /* Construct NodeInfo object with leaf hash and (if track is true) also leaf information. */
- NodeInfo node;
- node.hash = ComputeTapleafHash(leaf_version, script);
- if (track) node.leaves.emplace_back(LeafInfo{std::vector<unsigned char>(script.begin(), script.end()), leaf_version, {}});
- /* Insert into the branch. */
- Insert(std::move(node), depth);
- return *this;
-}
-
-TaprootBuilder& TaprootBuilder::AddOmitted(int depth, const uint256& hash)
-{
- if (!IsValid()) return *this;
- /* Construct NodeInfo object with the hash directly, and insert it into the branch. */
- NodeInfo node;
- node.hash = hash;
- Insert(std::move(node), depth);
- return *this;
-}
-
-TaprootBuilder& TaprootBuilder::Finalize(const XOnlyPubKey& internal_key)
-{
- /* Can only call this function when IsComplete() is true. */
- assert(IsComplete());
- m_internal_key = internal_key;
- auto ret = m_internal_key.CreateTapTweak(m_branch.size() == 0 ? nullptr : &m_branch[0]->hash);
- assert(ret.has_value());
- std::tie(m_output_key, m_parity) = *ret;
- return *this;
-}
-
-WitnessV1Taproot TaprootBuilder::GetOutput() { return WitnessV1Taproot{m_output_key}; }
-
-TaprootSpendData TaprootBuilder::GetSpendData() const
-{
- assert(IsComplete());
- assert(m_output_key.IsFullyValid());
- TaprootSpendData spd;
- spd.merkle_root = m_branch.size() == 0 ? uint256() : m_branch[0]->hash;
- spd.internal_key = m_internal_key;
- if (m_branch.size()) {
- // If any script paths exist, they have been combined into the root m_branch[0]
- // by now. Compute the control block for each of its tracked leaves, and put them in
- // spd.scripts.
- for (const auto& leaf : m_branch[0]->leaves) {
- std::vector<unsigned char> control_block;
- control_block.resize(TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size());
- control_block[0] = leaf.leaf_version | (m_parity ? 1 : 0);
- std::copy(m_internal_key.begin(), m_internal_key.end(), control_block.begin() + 1);
- if (leaf.merkle_branch.size()) {
- std::copy(leaf.merkle_branch[0].begin(),
- leaf.merkle_branch[0].begin() + TAPROOT_CONTROL_NODE_SIZE * leaf.merkle_branch.size(),
- control_block.begin() + TAPROOT_CONTROL_BASE_SIZE);
- }
- spd.scripts[{leaf.script, leaf.leaf_version}].insert(std::move(control_block));
- }
- }
- return spd;
-}
-
-std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output)
-{
- // Verify that the output matches the assumed Merkle root and internal key.
- auto tweak = spenddata.internal_key.CreateTapTweak(spenddata.merkle_root.IsNull() ? nullptr : &spenddata.merkle_root);
- if (!tweak || tweak->first != output) return std::nullopt;
- // If the Merkle root is 0, the tree is empty, and we're done.
- std::vector<std::tuple<int, std::vector<unsigned char>, int>> ret;
- if (spenddata.merkle_root.IsNull()) return ret;
-
- /** Data structure to represent the nodes of the tree we're going to build. */
- struct TreeNode {
- /** Hash of this node, if known; 0 otherwise. */
- uint256 hash;
- /** The left and right subtrees (note that their order is irrelevant). */
- std::unique_ptr<TreeNode> sub[2];
- /** If this is known to be a leaf node, a pointer to the (script, leaf_ver) pair.
- * nullptr otherwise. */
- const std::pair<std::vector<unsigned char>, int>* leaf = nullptr;
- /** Whether or not this node has been explored (is known to be a leaf, or known to have children). */
- bool explored = false;
- /** Whether or not this node is an inner node (unknown until explored = true). */
- bool inner;
- /** Whether or not we have produced output for this subtree. */
- bool done = false;
- };
-
- // Build tree from the provided branches.
- TreeNode root;
- root.hash = spenddata.merkle_root;
- for (const auto& [key, control_blocks] : spenddata.scripts) {
- const auto& [script, leaf_ver] = key;
- for (const auto& control : control_blocks) {
- // Skip script records with nonsensical leaf version.
- if (leaf_ver < 0 || leaf_ver >= 0x100 || leaf_ver & 1) continue;
- // Skip script records with invalid control block sizes.
- if (control.size() < TAPROOT_CONTROL_BASE_SIZE || control.size() > TAPROOT_CONTROL_MAX_SIZE ||
- ((control.size() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE) != 0) continue;
- // Skip script records that don't match the control block.
- if ((control[0] & TAPROOT_LEAF_MASK) != leaf_ver) continue;
- // Skip script records that don't match the provided Merkle root.
- const uint256 leaf_hash = ComputeTapleafHash(leaf_ver, script);
- const uint256 merkle_root = ComputeTaprootMerkleRoot(control, leaf_hash);
- if (merkle_root != spenddata.merkle_root) continue;
-
- TreeNode* node = &root;
- size_t levels = (control.size() - TAPROOT_CONTROL_BASE_SIZE) / TAPROOT_CONTROL_NODE_SIZE;
- for (size_t depth = 0; depth < levels; ++depth) {
- // Can't descend into a node which we already know is a leaf.
- if (node->explored && !node->inner) return std::nullopt;
-
- // Extract partner hash from Merkle branch in control block.
- uint256 hash;
- std::copy(control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - 1 - depth) * TAPROOT_CONTROL_NODE_SIZE,
- control.begin() + TAPROOT_CONTROL_BASE_SIZE + (levels - depth) * TAPROOT_CONTROL_NODE_SIZE,
- hash.begin());
-
- if (node->sub[0]) {
- // Descend into the existing left or right branch.
- bool desc = false;
- for (int i = 0; i < 2; ++i) {
- if (node->sub[i]->hash == hash || (node->sub[i]->hash.IsNull() && node->sub[1-i]->hash != hash)) {
- node->sub[i]->hash = hash;
- node = &*node->sub[1-i];
- desc = true;
- break;
- }
- }
- if (!desc) return std::nullopt; // This probably requires a hash collision to hit.
- } else {
- // We're in an unexplored node. Create subtrees and descend.
- node->explored = true;
- node->inner = true;
- node->sub[0] = std::make_unique<TreeNode>();
- node->sub[1] = std::make_unique<TreeNode>();
- node->sub[1]->hash = hash;
- node = &*node->sub[0];
- }
- }
- // Cannot turn a known inner node into a leaf.
- if (node->sub[0]) return std::nullopt;
- node->explored = true;
- node->inner = false;
- node->leaf = &key;
- node->hash = leaf_hash;
- }
- }
-
- // Recursive processing to turn the tree into flattened output. Use an explicit stack here to avoid
- // overflowing the call stack (the tree may be 128 levels deep).
- std::vector<TreeNode*> stack{&root};
- while (!stack.empty()) {
- TreeNode& node = *stack.back();
- if (!node.explored) {
- // Unexplored node, which means the tree is incomplete.
- return std::nullopt;
- } else if (!node.inner) {
- // Leaf node; produce output.
- ret.emplace_back(stack.size() - 1, node.leaf->first, node.leaf->second);
- node.done = true;
- stack.pop_back();
- } else if (node.sub[0]->done && !node.sub[1]->done && !node.sub[1]->explored && !node.sub[1]->hash.IsNull() &&
- ComputeTapbranchHash(node.sub[1]->hash, node.sub[1]->hash) == node.hash) {
- // Whenever there are nodes with two identical subtrees under it, we run into a problem:
- // the control blocks for the leaves underneath those will be identical as well, and thus
- // they will all be matched to the same path in the tree. The result is that at the location
- // where the duplicate occurred, the left child will contain a normal tree that can be explored
- // and processed, but the right one will remain unexplored.
- //
- // This situation can be detected, by encountering an inner node with unexplored right subtree
- // with known hash, and H_TapBranch(hash, hash) is equal to the parent node (this node)'s hash.
- //
- // To deal with this, simply process the left tree a second time (set its done flag to false;
- // noting that the done flag of its children have already been set to false after processing
- // those). To avoid ending up in an infinite loop, set the done flag of the right (unexplored)
- // subtree to true.
- node.sub[0]->done = false;
- node.sub[1]->done = true;
- } else if (node.sub[0]->done && node.sub[1]->done) {
- // An internal node which we're finished with.
- node.sub[0]->done = false;
- node.sub[1]->done = false;
- node.done = true;
- stack.pop_back();
- } else if (!node.sub[0]->done) {
- // An internal node whose left branch hasn't been processed yet. Do so first.
- stack.push_back(&*node.sub[0]);
- } else if (!node.sub[1]->done) {
- // An internal node whose right branch hasn't been processed yet. Do so first.
- stack.push_back(&*node.sub[1]);
- }
- }
-
- return ret;
-}
-
-std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> TaprootBuilder::GetTreeTuples() const
-{
- assert(IsComplete());
- std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> tuples;
- if (m_branch.size()) {
- const auto& leaves = m_branch[0]->leaves;
- for (const auto& leaf : leaves) {
- assert(leaf.merkle_branch.size() <= TAPROOT_CONTROL_MAX_NODE_COUNT);
- uint8_t depth = (uint8_t)leaf.merkle_branch.size();
- uint8_t leaf_ver = (uint8_t)leaf.leaf_version;
- tuples.push_back(std::make_tuple(depth, leaf_ver, leaf.script));
- }
- }
- return tuples;
-}
diff --git a/src/script/standard.h b/src/script/standard.h
index 8a76606082..9555cc2b61 100644
--- a/src/script/standard.h
+++ b/src/script/standard.h
@@ -175,136 +175,4 @@ std::optional<std::pair<int, std::vector<Span<const unsigned char>>>> MatchMulti
/** Generate a multisig script. */
CScript GetScriptForMultisig(int nRequired, const std::vector<CPubKey>& keys);
-struct ShortestVectorFirstComparator
-{
- bool operator()(const std::vector<unsigned char>& a, const std::vector<unsigned char>& b) const
- {
- if (a.size() < b.size()) return true;
- if (a.size() > b.size()) return false;
- return a < b;
- }
-};
-
-struct TaprootSpendData
-{
- /** The BIP341 internal key. */
- XOnlyPubKey internal_key;
- /** The Merkle root of the script tree (0 if no scripts). */
- uint256 merkle_root;
- /** Map from (script, leaf_version) to (sets of) control blocks.
- * More than one control block for a given script is only possible if it
- * appears in multiple branches of the tree. We keep them all so that
- * inference can reconstruct the full tree. Within each set, the control
- * blocks are sorted by size, so that the signing logic can easily
- * prefer the cheapest one. */
- std::map<std::pair<std::vector<unsigned char>, int>, std::set<std::vector<unsigned char>, ShortestVectorFirstComparator>> scripts;
- /** Merge other TaprootSpendData (for the same scriptPubKey) into this. */
- void Merge(TaprootSpendData other);
-};
-
-/** Utility class to construct Taproot outputs from internal key and script tree. */
-class TaprootBuilder
-{
-private:
- /** Information about a tracked leaf in the Merkle tree. */
- struct LeafInfo
- {
- std::vector<unsigned char> script; //!< The script.
- int leaf_version; //!< The leaf version for that script.
- std::vector<uint256> merkle_branch; //!< The hashing partners above this leaf.
- };
-
- /** Information associated with a node in the Merkle tree. */
- struct NodeInfo
- {
- /** Merkle hash of this node. */
- uint256 hash;
- /** Tracked leaves underneath this node (either from the node itself, or its children).
- * The merkle_branch field of each is the partners to get to *this* node. */
- std::vector<LeafInfo> leaves;
- };
- /** Whether the builder is in a valid state so far. */
- bool m_valid = true;
-
- /** The current state of the builder.
- *
- * For each level in the tree, one NodeInfo object may be present. m_branch[0]
- * is information about the root; further values are for deeper subtrees being
- * explored.
- *
- * For every right branch taken to reach the position we're currently
- * working in, there will be a (non-nullopt) entry in m_branch corresponding
- * to the left branch at that level.
- *
- * For example, imagine this tree: - N0 -
- * / \
- * N1 N2
- * / \ / \
- * A B C N3
- * / \
- * D E
- *
- * Initially, m_branch is empty. After processing leaf A, it would become
- * {nullopt, nullopt, A}. When processing leaf B, an entry at level 2 already
- * exists, and it would thus be combined with it to produce a level 1 one,
- * resulting in {nullopt, N1}. Adding C and D takes us to {nullopt, N1, C}
- * and {nullopt, N1, C, D} respectively. When E is processed, it is combined
- * with D, and then C, and then N1, to produce the root, resulting in {N0}.
- *
- * This structure allows processing with just O(log n) overhead if the leaves
- * are computed on the fly.
- *
- * As an invariant, there can never be nullopt entries at the end. There can
- * also not be more than 128 entries (as that would mean more than 128 levels
- * in the tree). The depth of newly added entries will always be at least
- * equal to the current size of m_branch (otherwise it does not correspond
- * to a depth-first traversal of a tree). m_branch is only empty if no entries
- * have ever be processed. m_branch having length 1 corresponds to being done.
- */
- std::vector<std::optional<NodeInfo>> m_branch;
-
- XOnlyPubKey m_internal_key; //!< The internal key, set when finalizing.
- XOnlyPubKey m_output_key; //!< The output key, computed when finalizing.
- bool m_parity; //!< The tweak parity, computed when finalizing.
-
- /** Combine information about a parent Merkle tree node from its child nodes. */
- static NodeInfo Combine(NodeInfo&& a, NodeInfo&& b);
- /** Insert information about a node at a certain depth, and propagate information up. */
- void Insert(NodeInfo&& node, int depth);
-
-public:
- /** Add a new script at a certain depth in the tree. Add() operations must be called
- * in depth-first traversal order of binary tree. If track is true, it will be included in
- * the GetSpendData() output. */
- TaprootBuilder& Add(int depth, Span<const unsigned char> script, int leaf_version, bool track = true);
- /** Like Add(), but for a Merkle node with a given hash to the tree. */
- TaprootBuilder& AddOmitted(int depth, const uint256& hash);
- /** Finalize the construction. Can only be called when IsComplete() is true.
- internal_key.IsFullyValid() must be true. */
- TaprootBuilder& Finalize(const XOnlyPubKey& internal_key);
-
- /** Return true if so far all input was valid. */
- bool IsValid() const { return m_valid; }
- /** Return whether there were either no leaves, or the leaves form a Huffman tree. */
- bool IsComplete() const { return m_valid && (m_branch.size() == 0 || (m_branch.size() == 1 && m_branch[0].has_value())); }
- /** Compute scriptPubKey (after Finalize()). */
- WitnessV1Taproot GetOutput();
- /** Check if a list of depths is legal (will lead to IsComplete()). */
- static bool ValidDepths(const std::vector<int>& depths);
- /** Compute spending data (after Finalize()). */
- TaprootSpendData GetSpendData() const;
- /** Returns a vector of tuples representing the depth, leaf version, and script */
- std::vector<std::tuple<uint8_t, uint8_t, std::vector<unsigned char>>> GetTreeTuples() const;
- /** Returns true if there are any tapscripts */
- bool HasScripts() const { return !m_branch.empty(); }
-};
-
-/** Given a TaprootSpendData and the output key, reconstruct its script tree.
- *
- * If the output doesn't match the spenddata, or if the data in spenddata is incomplete,
- * std::nullopt is returned. Otherwise, a vector of (depth, script, leaf_ver) tuples is
- * returned, corresponding to a depth-first traversal of the script tree.
- */
-std::optional<std::vector<std::tuple<int, std::vector<unsigned char>, int>>> InferTaprootTree(const TaprootSpendData& spenddata, const XOnlyPubKey& output);
-
#endif // BITCOIN_SCRIPT_STANDARD_H
diff --git a/src/wallet/test/ismine_tests.cpp b/src/wallet/test/ismine_tests.cpp
index fd0718fbb9..8fdfaf946e 100644
--- a/src/wallet/test/ismine_tests.cpp
+++ b/src/wallet/test/ismine_tests.cpp
@@ -6,6 +6,7 @@
#include <key_io.h>
#include <node/context.h>
#include <script/script.h>
+#include <script/signingprovider.h>
#include <script/standard.h>
#include <test/util/setup_common.h>
#include <wallet/types.h>