summaryrefslogtreecommitdiff
path: root/bip-schnorr/test-vectors.py
blob: 52e3b05c1bd0d60a291477b7f615e930e71efbf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import sys
from reference import *

def vector0():
    seckey = 1
    msg = bytes_from_int(0)
    sig = schnorr_sign(msg, seckey)
    pubkey = pubkey_gen(seckey)

    # The point reconstructed from the public key has an even Y coordinate.
    pubkey_point = point_from_bytes(pubkey)
    assert(pubkey_point[1] & 1 == 0)

    return (bytes_from_int(seckey), pubkey, msg, sig, "TRUE", None)

def vector1():
    seckey = 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF
    msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
    sig = schnorr_sign(msg, seckey)
    pubkey = pubkey_gen(seckey)

    # The point reconstructed from the public key has an odd Y coordinate.
    pubkey_point = point_from_bytes(pubkey)
    assert(pubkey_point[1] & 1 == 1)

    return (bytes_from_int(seckey), pubkey, msg, sig, "TRUE", None)

def vector2():
    seckey = 0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9
    msg = bytes_from_int(0x5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
    sig = schnorr_sign(msg, seckey)

    # This singature vector would not verify if the implementer checked the
    # jacobi symbol of the X coordinate of R instead of the Y coordinate.
    R = point_from_bytes(sig[0:32])
    assert(jacobi(R[0]) != 1)

    return (bytes_from_int(seckey), pubkey_gen(seckey), msg, sig, "TRUE", None)

def vector3():
    seckey = 0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710
    msg = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
    sig = schnorr_sign(msg, seckey)
    return (bytes_from_int(seckey), pubkey_gen(seckey), msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")

# Signs with a given nonce. Results in an invalid signature if y(kG) is not a
# quadratic residue.
def schnorr_sign_fixed_nonce(msg, seckey0, k):
    if len(msg) != 32:
        raise ValueError('The message must be a 32-byte array.')
    if not (1 <= seckey0 <= n - 1):
        raise ValueError('The secret key must be an integer in the range 1..n-1.')
    P = point_mul(G, seckey0)
    seckey = seckey0 if (jacobi(P[1]) == 1) else n - seckey0
    R = point_mul(G, k)
    e = int_from_bytes(tagged_hash("BIPSchnorr", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
    return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)

# Creates a singature with a small x(R) by using k = 1/2
def vector4():
    one_half = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
    seckey = 0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB
    msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703)
    sig = schnorr_sign_fixed_nonce(msg, seckey, one_half)
    return (None, pubkey_gen(seckey), msg, sig, "TRUE", None)

default_seckey = 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF
default_msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)

def vector5():
    seckey = default_seckey
    msg = default_msg
    sig = schnorr_sign(msg, seckey)

    # Public key is not on the curve
    pubkey = bytes_from_int(0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34)
    assert(point_from_bytes(pubkey) is None)

    return (None, pubkey, msg, sig, "FALSE", "public key not on the curve")

def vector6():
    seckey = default_seckey
    msg = default_msg
    k = 3
    sig = schnorr_sign_fixed_nonce(msg, seckey, k)

    # Y coordinate of R is not a quadratic residue
    R = point_mul(G, k)
    assert(jacobi(R[1]) != 1)

    return (None, pubkey_gen(seckey), msg, sig, "FALSE", "incorrect R residuosity")

def vector7():
    seckey = default_seckey
    msg = int_from_bytes(default_msg)
    neg_msg = bytes_from_int(n - msg)
    sig = schnorr_sign(neg_msg, seckey)
    return (None, pubkey_gen(seckey), bytes_from_int(msg), sig, "FALSE", "negated message")

def vector8():
    seckey = default_seckey
    msg = default_msg
    sig = schnorr_sign(msg, seckey)
    sig = sig[0:32] + bytes_from_int(n - int_from_bytes(sig[32:64]))
    return (None, pubkey_gen(seckey), msg, sig, "FALSE", "negated s value")

def bytes_from_point_inf0(P):
    if P == None:
        return bytes_from_int(0)
    return bytes_from_int(P[0])

def vector9():
    seckey = default_seckey
    msg = default_msg

    # Override bytes_from_point in schnorr_sign to allow creating a signature
    # with k = 0.
    k = 0
    bytes_from_point_tmp = bytes_from_point.__code__
    bytes_from_point.__code__ = bytes_from_point_inf0.__code__
    sig = schnorr_sign_fixed_nonce(msg, seckey, k)
    bytes_from_point.__code__ = bytes_from_point_tmp

    return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 0")

def bytes_from_point_inf1(P):
    if P == None:
        return bytes_from_int(1)
    return bytes_from_int(P[0])

def vector10():
    seckey = default_seckey
    msg = default_msg

    # Override bytes_from_point in schnorr_sign to allow creating a signature
    # with k = 0.
    k = 0
    bytes_from_point_tmp = bytes_from_point.__code__
    bytes_from_point.__code__ = bytes_from_point_inf1.__code__
    sig = schnorr_sign_fixed_nonce(msg, seckey, k)
    bytes_from_point.__code__ = bytes_from_point_tmp

    return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 1")

# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is an X
# coordinate on the curve. This test vector just increases test coverage.
def vector11():
    seckey = default_seckey
    msg = default_msg
    sig = schnorr_sign(msg, seckey)

    # Replace R's X coordinate with an X coordinate that's not on the curve
    x_not_on_curve = bytes_from_int(0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D)
    assert(point_from_bytes(x_not_on_curve) is None)
    sig = x_not_on_curve + sig[32:64]

    return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")

# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is smaller
# than the field size. This test vector just increases test coverage.
def vector12():
    seckey = default_seckey
    msg = default_msg
    sig = schnorr_sign(msg, seckey)

    # Replace R's X coordinate with an X coordinate that's equal to field size
    sig = bytes_from_int(p) + sig[32:64]

    return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is equal to field size")

# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[32:64] is smaller
# than the curve order. This test vector just increases test coverage.
def vector13():
    seckey = default_seckey
    msg = default_msg
    sig = schnorr_sign(msg, seckey)

    # Replace s with a number that's equal to the curve order
    sig = sig[0:32] + bytes_from_int(n)

    return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[32:64] is equal to curve order")

vectors = [
        vector0(),
        vector1(),
        vector2(),
        vector3(),
        vector4(),
        vector5(),
        vector6(),
        vector7(),
        vector8(),
        vector9(),
        vector10(),
        vector11(),
        vector12(),
        vector13(),
    ]

# Converts the byte strings of a test vector into hex strings
def bytes_to_hex(seckey, pubkey, msg, sig, result, comment):
    return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), msg.hex().upper(), sig.hex().upper(), result, comment)

vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5]), vectors))

def print_csv(vectors):
    writer = csv.writer(sys.stdout)
    writer.writerow(("index", "secret key", "public key", "message", "signature", "verification result", "comment"))
    for (i,v) in enumerate(vectors):
        writer.writerow((i,)+v)

print_csv(vectors)