1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
import sys
from reference import *
def vector0():
seckey = bytes_from_int(3)
msg = bytes_from_int(0)
aux_rand = bytes_from_int(0)
sig = schnorr_sign(msg, seckey, aux_rand)
pubkey = pubkey_gen(seckey)
# We should have at least one test vector where the seckey needs to be
# negated and one where it doesn't. In this one the seckey doesn't need to
# be negated.
x = int_from_bytes(seckey)
P = point_mul(G, x)
assert(y(P) % 2 == 0)
# For historic reasons (pubkey tiebreaker was squareness and not evenness)
# we should have at least one test vector where the the point reconstructed
# from the public key has a square and one where it has a non-square Y
# coordinate. In this one Y is non-square.
pubkey_point = lift_x_even_y(pubkey)
assert(not has_square_y(pubkey_point))
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
def vector1():
seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF)
msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
aux_rand = bytes_from_int(1)
sig = schnorr_sign(msg, seckey, aux_rand)
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", None)
def vector2():
seckey = bytes_from_int(0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9)
msg = bytes_from_int(0x7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906)
sig = schnorr_sign(msg, seckey, aux_rand)
# The point reconstructed from the public key has a square Y coordinate.
pubkey = pubkey_gen(seckey)
pubkey_point = lift_x_even_y(pubkey)
assert(has_square_y(pubkey_point))
# This signature vector would not verify if the implementer checked the
# squareness of the X coordinate of R instead of the Y coordinate.
R = lift_x_square_y(sig[0:32])
assert(not is_square(R[0]))
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
def vector3():
seckey = bytes_from_int(0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710)
# Need to negate this seckey before signing
x = int_from_bytes(seckey)
P = point_mul(G, x)
assert(y(P) % 2 != 0)
msg = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
aux_rand = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
sig = schnorr_sign(msg, seckey, aux_rand)
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")
# Signs with a given nonce. This can be INSECURE and is only INTENDED FOR
# GENERATING TEST VECTORS. Results in an invalid signature if y(kG) is not
# square.
def insecure_schnorr_sign_fixed_nonce(msg, seckey0, k):
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
seckey0 = int_from_bytes(seckey0)
if not (1 <= seckey0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, seckey0)
seckey = seckey0 if has_even_y(P) else n - seckey0
R = point_mul(G, k)
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
# Creates a singature with a small x(R) by using k = 1/2
def vector4():
one_half = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
seckey = bytes_from_int(0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB)
msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703)
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, one_half)
return (None, pubkey_gen(seckey), None, msg, sig, "TRUE", None)
default_seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF)
default_msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
default_aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906)
# Public key is not on the curve
def vector5():
# This creates a dummy signature that doesn't have anything to do with the
# public key.
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
pubkey = bytes_from_int(0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34)
assert(lift_x_even_y(pubkey) is None)
return (None, pubkey, None, msg, sig, "FALSE", "public key not on the curve")
def vector6():
seckey = default_seckey
msg = default_msg
k = 3
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
# Y coordinate of R is not a square
R = point_mul(G, k)
assert(not has_square_y(R))
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "has_square_y(R) is false")
def vector7():
seckey = default_seckey
msg = int_from_bytes(default_msg)
neg_msg = bytes_from_int(n - msg)
sig = schnorr_sign(neg_msg, seckey, default_aux_rand)
return (None, pubkey_gen(seckey), None, bytes_from_int(msg), sig, "FALSE", "negated message")
def vector8():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
sig = sig[0:32] + bytes_from_int(n - int_from_bytes(sig[32:64]))
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "negated s value")
def bytes_from_point_inf0(P):
if P == None:
return bytes_from_int(0)
return bytes_from_int(P[0])
def vector9():
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point.__code__
bytes_from_point.__code__ = bytes_from_point_inf0.__code__
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0")
def bytes_from_point_inf1(P):
if P == None:
return bytes_from_int(1)
return bytes_from_int(P[0])
def vector10():
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point.__code__
bytes_from_point.__code__ = bytes_from_point_inf1.__code__
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is an X
# coordinate on the curve. This test vector just increases test coverage.
def vector11():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace R's X coordinate with an X coordinate that's not on the curve
x_not_on_curve = bytes_from_int(0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D)
assert(lift_x_square_y(x_not_on_curve) is None)
sig = x_not_on_curve + sig[32:64]
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is smaller
# than the field size. This test vector just increases test coverage.
def vector12():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace R's X coordinate with an X coordinate that's equal to field size
sig = bytes_from_int(p) + sig[32:64]
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is equal to field size")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[32:64] is smaller
# than the curve order. This test vector just increases test coverage.
def vector13():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
# Replace s with a number that's equal to the curve order
sig = sig[0:32] + bytes_from_int(n)
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[32:64] is equal to curve order")
# Test out of range pubkey
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which accepts out of range pubkeys because we can't find
# a secret key for such a public key and therefore can not create a signature.
# This test vector just increases test coverage.
def vector14():
# This creates a dummy signature that doesn't have anything to do with the
# public key.
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey, default_aux_rand)
pubkey_int = p + 1
pubkey = bytes_from_int(pubkey_int)
assert(lift_x_even_y(pubkey) is None)
# If an implementation would reduce a given public key modulo p then the
# pubkey would be valid
assert(lift_x_even_y(bytes_from_int(pubkey_int % p)) is not None)
return (None, pubkey, None, msg, sig, "FALSE", "public key is not a valid X coordinate because it exceeds the field size")
vectors = [
vector0(),
vector1(),
vector2(),
vector3(),
vector4(),
vector5(),
vector6(),
vector7(),
vector8(),
vector9(),
vector10(),
vector11(),
vector12(),
vector13(),
vector14()
]
# Converts the byte strings of a test vector into hex strings
def bytes_to_hex(seckey, pubkey, aux_rand, msg, sig, result, comment):
return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), aux_rand.hex().upper() if aux_rand is not None else None, msg.hex().upper(), sig.hex().upper(), result, comment)
vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5], vector[6]), vectors))
def print_csv(vectors):
writer = csv.writer(sys.stdout)
writer.writerow(("index", "secret key", "public key", "aux_rand", "message", "signature", "verification result", "comment"))
for (i,v) in enumerate(vectors):
writer.writerow((i,)+v)
print_csv(vectors)
|