summaryrefslogtreecommitdiff
path: root/bip-0324/reference.py
blob: f02c44ac7106dcbdb947852ecee6f6e1d92a1a12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
"""Reference implementation for the cryptographic aspects of BIP-324"""

import sys
import random
import hashlib
import hmac

### BIP-340 tagged hash

def TaggedHash(tag, data):
    """Compute BIP-340 tagged hash with specified tag string of data."""
    ss = hashlib.sha256(tag.encode('utf-8')).digest()
    ss += ss
    ss += data
    return hashlib.sha256(ss).digest()

### HKDF-SHA256

def hmac_sha256(key, data):
    """Compute HMAC-SHA256 from specified byte arrays key and data."""
    return hmac.new(key, data, hashlib.sha256).digest()

def hkdf_sha256(length, ikm, salt, info):
    """Derive a key using HKDF-SHA256."""
    if len(salt) == 0:
        salt = bytes([0] * 32)
    prk = hmac_sha256(salt, ikm)
    t = b""
    okm = b""
    for i in range((length + 32 - 1) // 32):
        t = hmac_sha256(prk, t + info + bytes([i + 1]))
        okm += t
    return okm[:length]

### secp256k1 field/group elements

def modinv(a, n):
    """Compute the modular inverse of a modulo n using the extended Euclidean
    Algorithm. See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers.
    """
    a = a % n
    if a == 0:
        return 0
    if sys.hexversion >= 0x3080000:
        # More efficient version available in Python 3.8.
        return pow(a, -1, n)
    t1, t2 = 0, 1
    r1, r2 = n, a
    while r2 != 0:
        q = r1 // r2
        t1, t2 = t2, t1 - q * t2
        r1, r2 = r2, r1 - q * r2
    if r1 > 1:
        return None
    if t1 < 0:
        t1 += n
    return t1

class FE:
    """Objects of this class represent elements of the field GF(2**256 - 2**32 - 977).

    They are represented internally in numerator / denominator form, in order to delay inversions.
    """

    SIZE = 2**256 - 2**32 - 977

    def __init__(self, a=0, b=1):
        """Initialize an FE as a/b; both a and b can be ints or field elements."""
        if isinstance(b, FE):
            if isinstance(a, FE):
                self.num = (a.num * b.den) % FE.SIZE
                self.den = (a.den * b.num) % FE.SIZE
            else:
                self.num = (a * b.den) % FE.SIZE
                self.den = b.num
        else:
            b = b % FE.SIZE
            assert b != 0
            if isinstance(a, FE):
                self.num = a.num
                self.den = (a.den * b) % FE.SIZE
            else:
                self.num = a % FE.SIZE
                self.den = b

    def __add__(self, a):
        """Compute the sum of two field elements (second may be int)."""
        if isinstance(a, FE):
            return FE(self.num * a.den + self.den * a.num, self.den * a.den)
        return FE(self.num + self.den * a, self.den)

    def __radd__(self, a):
        """Compute the sum of an integer and a field element."""
        return FE(self.num + self.den * a, self.den)

    def __sub__(self, a):
        """Compute the difference of two field elements (second may be int)."""
        if isinstance(a, FE):
            return FE(self.num * a.den - self.den * a.num, self.den * a.den)
        return FE(self.num - self.den * a, self.den)

    def __rsub__(self, a):
        """Compute the difference between an integer and a field element."""
        return FE(self.den * a - self.num, self.den)

    def __mul__(self, a):
        """Compute the product of two field elements (second may be int)."""
        if isinstance(a, FE):
            return FE(self.num * a.num, self.den * a.den)
        return FE(self.num * a, self.den)

    def __rmul__(self, a):
        """Compute the product of an integer with a field element."""
        return FE(self.num * a, self.den)

    def __truediv__(self, a):
        """Compute the ratio of two field elements (second may be int)."""
        return FE(self, a)

    def __rtruediv__(self, a):
        """Compute the ratio of an integer and a field element."""
        return FE(a, self)

    def __pow__(self, a):
        """Raise a field element to a (positive) integer power."""
        return FE(pow(self.num, a, FE.SIZE), pow(self.den, a, FE.SIZE))

    def __neg__(self):
        """Negate a field element."""
        return FE(-self.num, self.den)

    def __int__(self):
        """Convert a field element to an integer. The result is cached."""
        if self.den != 1:
            self.num = (self.num * modinv(self.den, FE.SIZE)) % FE.SIZE
            self.den = 1
        return self.num

    def sqrt(self):
        """Compute the square root of a field element.

        Due to the fact that our modulus p is of the form p = 3 (mod 4), the
        Tonelli-Shanks algorithm (https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm)
        is simply raising the argument to the power (p + 1) / 4.

        To see why: p-1 = 0 (mod 2), so 2 divides the order of the multiplicative group,
        and thus only half of the non-zero field elements are squares. An element a is
        a (nonzero) square when Euler's criterion, a^((p-1)/2) = 1 (mod p), holds. We're
        looking for x such that x^2 = a (mod p). Given a^((p-1)/2) = 1 (mod p), that is
        equivalent to x^2 = a^(1 + (p-1)/2) (mod p). As (1 + (p-1)/2) is even, this is
        equivalent to x = a^((1 + (p-1)/2)/2) (mod p), or x = a^((p+1)/4) (mod p)."""
        v = int(self)
        s = pow(v, (FE.SIZE + 1) // 4, FE.SIZE)
        if s**2 % FE.SIZE == v:
            return FE(s)
        return None

    def sqrts(self):
        """Compute all square roots of a field element, if any."""
        s = self.sqrt()
        if s is None:
            return []
        return [FE(s), -FE(s)]

    # The cube roots of 1 (mod p).
    CBRT1 = [
        1,
        0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40,
        0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
    ]


    def cbrts(self):
        """Compute all cube roots of a field element, if any.

        Due to the fact that our modulus p is of the form p = 7 (mod 9), one cube root
        can always be computed by raising to the power (p + 2) / 9. The other roots
        (if any) can be found by multiplying with the two non-trivial cube roots of 1.

        To see why: p-1 = 0 (mod 3), so 3 divides the order of the multiplicative group,
        and thus only 1/3 of the non-zero field elements are cubes. An element a is a
        (nonzero) cube when a^((p-1)/3) = 1 (mod p). We're looking for x such that
        x^3 = a (mod p). Given a^((p-1)/3) = 1 (mod p), that is equivalent to
        x^3 = a^(1 + (p-1)/3) (mod p). As (1 + (p-1)/3) is a multiple of 3, this is
        equivalent to x = a^((1 + (p-1)/3)/3) (mod p), or x = a^((p+2)/9) (mod p)."""
        v = int(self)
        c = pow(v, (FE.SIZE + 2) // 9, FE.SIZE)

        if pow(c, 3, FE.SIZE) == v:
            return [FE(c * f) for f in FE.CBRT1]
        return []

    def is_square(self):
        """Determine if this field element has a square root."""
        # Compute the Jacobi symbol of (self / p). Since our modulus is prime, this
        # is the same as the Legendre symbol, which determines quadratic residuosity.
        # See https://en.wikipedia.org/wiki/Jacobi_symbol for the algorithm.
        n, k, t = (self.num * self.den) % FE.SIZE, FE.SIZE, 0
        if n == 0:
            return True
        while n != 0:
            while n & 1 == 0:
                n >>= 1
                r = k & 7
                t ^= (r in (3, 5))
            n, k = k, n
            t ^= (n & k & 3 == 3)
            n = n % k
        assert k == 1
        return not t

    def __eq__(self, a):
        """Check whether two field elements are equal (second may be an int)."""
        if isinstance(a, FE):
            return (self.num * a.den - self.den * a.num) % FE.SIZE == 0
        return (self.num - self.den * a) % FE.SIZE == 0

    def to_bytes(self):
        """Convert a field element to 32-byte big endian encoding."""
        return int(self).to_bytes(32, 'big')

    @staticmethod
    def from_bytes(b):
        """Convert a 32-byte big endian encoding of a field element to an FE."""
        v = int.from_bytes(b, 'big')
        if v >= FE.SIZE:
            return None
        return FE(v)

    def __str__(self):
        """Convert this field element to a string."""
        return f"{int(self):064x}"

    def __repr__(self):
        """Get a string representation of this field element."""
        return f"FE(0x{int(self):x})"

assert all(pow(c, 3, FE.SIZE) == 1 for c in FE.CBRT1)

class GE:
    """Objects of this class represent points (group elements) on the secp256k1 curve.

    The point at infinity is represented as None."""

    ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
    ORDER_HALF = ORDER // 2

    def __init__(self, x, y):
        """Initialize a group element with specified x and y coordinates (must be on curve)."""
        fx = FE(x)
        fy = FE(y)
        assert fy**2 == fx**3 + 7
        self.x = fx
        self.y = fy

    def double(self):
        """Compute the double of a point."""
        l = 3 * self.x**2 / (2 * self.y)
        x3 = l**2 - 2 * self.x
        y3 = l * (self.x - x3) - self.y
        return GE(x3, y3)

    def __add__(self, a):
        """Add two points, or a point and infinity, together."""
        if a is None:
            # Adding point at infinity
            return self
        if self.x != a.x:
            # Adding distinct x coordinates
            l = (a.y - self.y) / (a.x - self.x)
            x3 = l**2 - self.x - a.x
            y3 = l * (self.x - x3) - self.y
            return GE(x3, y3)
        if self.y == a.y:
            # Adding point to itself
            return self.double()
        # Adding point to its negation
        return None

    def __radd__(self, a):
        """Add infinity to a point."""
        assert a is None
        return self

    def __mul__(self, a):
        """Multiply a point with an integer (scalar multiplication)."""
        r = None
        for i in range(a.bit_length() - 1, -1, -1):
            if r is not None:
                r = r.double()
            if (a >> i) & 1:
                r += self
        return r

    def __rmul__(self, a):
        """Multiply an integer with a point (scalar multiplication)."""
        return self * a

    @staticmethod
    def lift_x(x):
        """Take an FE, and return the point with that as X coordinate, and square Y."""
        y = (FE(x)**3 + 7).sqrt()
        if y is None:
            return None
        return GE(x, y)

    @staticmethod
    def is_valid_x(x):
        """Determine whether the provided field element is a valid X coordinate."""
        return (FE(x)**3 + 7).is_square()

    def __str__(self):
        """Convert this group element to a string."""
        return f"({self.x},{self.y})"

    def __repr__(self):
        """Get a string representation for this group element."""
        return f"GE(0x{int(self.x)},0x{int(self.y)})"

SECP256K1_G = GE(
    0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,
    0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8)

### ElligatorSwift

# Precomputed constant square root of -3 (mod p).
MINUS_3_SQRT = FE(-3).sqrt()

def xswiftec(u, t):
    """Decode field elements (u, t) to an X coordinate on the curve."""
    if u == 0:
        u = FE(1)
    if t == 0:
        t = FE(1)
    if u**3 + t**2 + 7 == 0:
        t = 2 * t
    X = (u**3 + 7 - t**2) / (2 * t)
    Y = (X + t) / (MINUS_3_SQRT * u)
    for x in (u + 4 * Y**2, (-X / Y - u) / 2, (X / Y - u) / 2):
        if GE.is_valid_x(x):
            return x
    assert False

def xswiftec_inv(x, u, case):
    """Given x and u, find t such that xswiftec(u, t) = x, or return None.

    Case selects which of the up to 8 results to return."""

    if case & 2 == 0:
        if GE.is_valid_x(-x - u):
            return None
        v = x
        s = -(u**3 + 7) / (u**2 + u*v + v**2)
    else:
        s = x - u
        if s == 0:
            return None
        r = (-s * (4 * (u**3 + 7) + 3 * s * u**2)).sqrt()
        if r is None:
            return None
        if case & 1 and r == 0:
            return None
        v = (-u + r / s) / 2
    w = s.sqrt()
    if w is None:
        return None
    if case & 5 == 0: return -w * (u * (1 - MINUS_3_SQRT) / 2 + v)
    if case & 5 == 1: return  w * (u * (1 + MINUS_3_SQRT) / 2 + v)
    if case & 5 == 4: return  w * (u * (1 - MINUS_3_SQRT) / 2 + v)
    if case & 5 == 5: return -w * (u * (1 + MINUS_3_SQRT) / 2 + v)

def xelligatorswift(x):
    """Given a field element X on the curve, find (u, t) that encode them."""
    while True:
        u = FE(random.randrange(1, GE.ORDER))
        case = random.randrange(0, 8)
        t = xswiftec_inv(x, u, case)
        if t is not None:
            return u, t

def ellswift_create():
    """Generate a (privkey, ellswift_pubkey) pair."""
    priv = random.randrange(1, GE.ORDER)
    u, t = xelligatorswift((priv * SECP256K1_G).x)
    return priv.to_bytes(32, 'big'), u.to_bytes() + t.to_bytes()

def ellswift_decode(ellswift):
    """Convert ellswift encoded X coordinate to 32-byte xonly format."""
    u = FE(int.from_bytes(ellswift[:32], 'big'))
    t = FE(int.from_bytes(ellswift[32:], 'big'))
    return xswiftec(u, t).to_bytes()

def ellswift_ecdh_xonly(pubkey_theirs, privkey):
    """Compute X coordinate of shared ECDH point between elswift pubkey and privkey."""
    d = int.from_bytes(privkey, 'big')
    pub = ellswift_decode(pubkey_theirs)
    return (d * GE.lift_x(FE.from_bytes(pub))).x.to_bytes()

### Poly1305

class Poly1305:
    """Class representing a running poly1305 computation."""
    MODULUS = 2**130 - 5

    def __init__(self, key):
        self.r = int.from_bytes(key[:16], 'little') & 0xffffffc0ffffffc0ffffffc0fffffff
        self.s = int.from_bytes(key[16:], 'little')
        self.acc = 0

    def add(self, msg, length=None, pad=False):
        """Add a message of any length. Input so far must be a multiple of 16 bytes."""
        length = len(msg) if length is None else length
        for i in range((length + 15) // 16):
            chunk = msg[i * 16:i * 16 + min(16, length - i * 16)]
            val = int.from_bytes(chunk, 'little') + 256**(16 if pad else len(chunk))
            self.acc = (self.r * (self.acc + val)) % Poly1305.MODULUS
        return self

    def tag(self):
        """Compute the poly1305 tag."""
        return ((self.acc + self.s) & 0xffffffffffffffffffffffffffffffff).to_bytes(16, 'little')

### ChaCha20

CHACHA20_INDICES = (
    (0, 4, 8, 12), (1, 5, 9, 13), (2, 6, 10, 14), (3, 7, 11, 15),
    (0, 5, 10, 15), (1, 6, 11, 12), (2, 7, 8, 13), (3, 4, 9, 14)
)

CHACHA20_CONSTANTS = (0x61707865, 0x3320646e, 0x79622d32, 0x6b206574)

def rotl32(v, bits):
    """Rotate the 32-bit value v left by bits bits."""
    return ((v << bits) & 0xffffffff) | (v >> (32 - bits))

def chacha20_doubleround(s):
    """Apply a ChaCha20 double round to 16-element state array s.

    See https://cr.yp.to/chacha/chacha-20080128.pdf and https://tools.ietf.org/html/rfc8439
    """
    for a, b, c, d in CHACHA20_INDICES:
        s[a] = (s[a] + s[b]) & 0xffffffff
        s[d] = rotl32(s[d] ^ s[a], 16)
        s[c] = (s[c] + s[d]) & 0xffffffff
        s[b] = rotl32(s[b] ^ s[c], 12)
        s[a] = (s[a] + s[b]) & 0xffffffff
        s[d] = rotl32(s[d] ^ s[a], 8)
        s[c] = (s[c] + s[d]) & 0xffffffff
        s[b] = rotl32(s[b] ^ s[c], 7)

def chacha20_block(key, nonce, cnt):
    """Compute the 64-byte output of the ChaCha20 block function.

    Takes as input a 32-byte key, 12-byte nonce, and 32-bit integer counter.
    """
    # Initial state.
    init = [0 for _ in range(16)]
    for i in range(4):
        init[i] = CHACHA20_CONSTANTS[i]
    for i in range(8):
        init[4 + i] = int.from_bytes(key[4 * i:4 * (i+1)], 'little')
    init[12] = cnt
    for i in range(3):
        init[13 + i] = int.from_bytes(nonce[4 * i:4 * (i+1)], 'little')
    # Perform 20 rounds.
    state = list(init)
    for _ in range(10):
        chacha20_doubleround(state)
    # Add initial values back into state.
    for i in range(16):
        state[i] = (state[i] + init[i]) & 0xffffffff
    # Produce byte output
    return b''.join(state[i].to_bytes(4, 'little') for i in range(16))

### ChaCha20Poly1305

def aead_chacha20_poly1305_encrypt(key, nonce, aad, plaintext):
    """Encrypt a plaintext using ChaCha20Poly1305."""
    ret = bytearray()
    msg_len = len(plaintext)
    for i in range((msg_len + 63) // 64):
        now = min(64, msg_len - 64 * i)
        keystream = chacha20_block(key, nonce, i + 1)
        for j in range(now):
            ret.append(plaintext[j + 64 * i] ^ keystream[j])
    poly1305 = Poly1305(chacha20_block(key, nonce, 0)[:32])
    poly1305.add(aad, pad=True).add(ret, pad=True)
    poly1305.add(len(aad).to_bytes(8, 'little') + msg_len.to_bytes(8, 'little'))
    ret += poly1305.tag()
    return bytes(ret)

def aead_chacha20_poly1305_decrypt(key, nonce, aad, ciphertext):
    """Decrypt a ChaCha20Poly1305 ciphertext."""
    if len(ciphertext) < 16:
        return None
    msg_len = len(ciphertext) - 16
    poly1305 = Poly1305(chacha20_block(key, nonce, 0)[:32])
    poly1305.add(aad, pad=True)
    poly1305.add(ciphertext, length=msg_len, pad=True)
    poly1305.add(len(aad).to_bytes(8, 'little') + msg_len.to_bytes(8, 'little'))
    if ciphertext[-16:] != poly1305.tag():
        return None
    ret = bytearray()
    for i in range((msg_len + 63) // 64):
        now = min(64, msg_len - 64 * i)
        keystream = chacha20_block(key, nonce, i + 1)
        for j in range(now):
            ret.append(ciphertext[j + 64 * i] ^ keystream[j])
    return bytes(ret)

### FSChaCha20{,Poly1305}

REKEY_INTERVAL = 224 # packets

class FSChaCha20Poly1305:
    """Rekeying wrapper AEAD around ChaCha20Poly1305."""

    def __init__(self, initial_key):
        self.key = initial_key
        self.packet_counter = 0

    def crypt(self, aad, text, is_decrypt):
        """Encrypt or decrypt the specified (plain/cipher)text."""
        nonce = ((self.packet_counter % REKEY_INTERVAL).to_bytes(4, 'little') +
                 (self.packet_counter // REKEY_INTERVAL).to_bytes(8, 'little'))
        if is_decrypt:
            ret = aead_chacha20_poly1305_decrypt(self.key, nonce, aad, text)
        else:
            ret = aead_chacha20_poly1305_encrypt(self.key, nonce, aad, text)
        if (self.packet_counter + 1) % REKEY_INTERVAL == 0:
            rekey_nonce = b"\xFF\xFF\xFF\xFF" + nonce[4:]
            newkey1 = aead_chacha20_poly1305_encrypt(self.key, rekey_nonce, b"", b"\x00" * 32)[:32]
            newkey2 = chacha20_block(self.key, rekey_nonce, 1)[:32]
            assert newkey1 == newkey2
            self.key = newkey1
        self.packet_counter += 1
        return ret

    def encrypt(self, aad, plaintext):
        """Encrypt the specified plaintext with provided AAD."""
        return self.crypt(aad, plaintext, False)

    def decrypt(self, aad, ciphertext):
        """Decrypt the specified ciphertext with provided AAD."""
        return self.crypt(aad, ciphertext, True)


class FSChaCha20:
    """Rekeying wrapper stream cipher around ChaCha20."""

    def __init__(self, initial_key):
        self.key = initial_key
        self.block_counter = 0
        self.chunk_counter = 0
        self.keystream = b''

    def get_keystream_bytes(self, nbytes):
        """Generate nbytes keystream bytes."""
        while len(self.keystream) < nbytes:
            nonce = ((0).to_bytes(4, 'little') +
                     (self.chunk_counter // REKEY_INTERVAL).to_bytes(8, 'little'))
            self.keystream += chacha20_block(self.key, nonce, self.block_counter)
            self.block_counter += 1
        ret = self.keystream[:nbytes]
        self.keystream = self.keystream[nbytes:]
        return ret

    def crypt(self, chunk):
        """Encrypt or decypt chunk."""
        ks = self.get_keystream_bytes(len(chunk))
        ret = bytes([ks[i] ^ chunk[i] for i in range(len(chunk))])
        if ((self.chunk_counter + 1) % REKEY_INTERVAL) == 0:
            self.key = self.get_keystream_bytes(32)
            self.block_counter = 0
        self.chunk_counter += 1
        return ret

    def encrypt(self, chunk):
        """Encrypt chunk."""
        return self.crypt(chunk)

    def decrypt(self, chunk):
        """Decrypt chunk."""
        return self.crypt(chunk)


### Shared secret computation

def v2_ecdh(priv, ellswift_theirs, ellswift_ours, initiating):
    """Compute BIP324 shared secret."""

    ecdh_point_x32 = ellswift_ecdh_xonly(ellswift_theirs, priv)
    if initiating:
        # Initiating, place our public key encoding first.
        return TaggedHash("bip324_ellswift_xonly_ecdh",
            ellswift_ours + ellswift_theirs + ecdh_point_x32)
    # Responding, place their public key encoding first.
    return TaggedHash("bip324_ellswift_xonly_ecdh",
        ellswift_theirs + ellswift_ours + ecdh_point_x32)

### Key derivation

NETWORK_MAGIC = b'\xf9\xbe\xb4\xd9'

def initialize_v2_transport(ecdh_secret, initiating):
    """Return a peer object with various BIP324 derived keys and ciphers."""

    peer = {}
    salt = b'bitcoin_v2_shared_secret' + NETWORK_MAGIC
    for name, length in (
        ('initiator_L', 32), ('initiator_P', 32), ('responder_L', 32), ('responder_P', 32),
        ('garbage_terminators', 32), ('session_id', 32)):
        peer[name] = hkdf_sha256(
            salt=salt, ikm=ecdh_secret, info=name.encode('utf-8'), length=length)
    peer['initiator_garbage_terminator'] = peer['garbage_terminators'][:16]
    peer['responder_garbage_terminator'] = peer['garbage_terminators'][16:]
    del peer['garbage_terminators']
    if initiating:
        peer['send_L'] = FSChaCha20(peer['initiator_L'])
        peer['send_P'] = FSChaCha20Poly1305(peer['initiator_P'])
        peer['send_garbage_terminator'] = peer['initiator_garbage_terminator']
        peer['recv_L'] = FSChaCha20(peer['responder_L'])
        peer['recv_P'] = FSChaCha20Poly1305(peer['responder_P'])
        peer['recv_garbage_terminator'] = peer['responder_garbage_terminator']
    else:
        peer['send_L'] = FSChaCha20(peer['responder_L'])
        peer['send_P'] = FSChaCha20Poly1305(peer['responder_P'])
        peer['send_garbage_terminator'] = peer['responder_garbage_terminator']
        peer['recv_L'] = FSChaCha20(peer['initiator_L'])
        peer['recv_P'] = FSChaCha20Poly1305(peer['initiator_P'])
        peer['recv_garbage_terminator'] = peer['initiator_garbage_terminator']

    return peer

### Packet encryption

LENGTH_FIELD_LEN = 3
HEADER_LEN = 1
IGNORE_BIT_POS = 7

def v2_enc_packet(peer, contents, aad=b'', ignore=False):
    """Encrypt a BIP324 packet."""

    assert len(contents) <= 2**24 - 1
    header = (ignore << IGNORE_BIT_POS).to_bytes(HEADER_LEN, 'little')
    plaintext = header + contents
    aead_ciphertext = peer['send_P'].encrypt(aad, plaintext)
    enc_plaintext_len = peer['send_L'].encrypt(len(contents).to_bytes(LENGTH_FIELD_LEN, 'little'))
    return enc_plaintext_len + aead_ciphertext