1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
#!/usr/bin/python3
import numpy as np
import matplotlib.pyplot as plt
PHASES = 15
PHASE_LENGTH = 144
SAMPLES = PHASE_LENGTH * PHASES
AVG_TX = 235
COMPRESSED_NODE_SIZE = 4 + 1 + 1 + 4 + 32 + 4 + 4 + 8 + 8 + 34 + 34 + 33 + 32 + 34
print(COMPRESSED_NODE_SIZE)
MAX_BLOCK_SIZE = 1e6
AVG_INTERVAL = 10*60
TXNS_PER_SEC = 0.5*MAX_BLOCK_SIZE/AVG_TX/AVG_INTERVAL
MAX_MEMPOOL = MAX_BLOCK_SIZE * 100
COMPRESSABLE = 0.05
def get_rate(phase):
if phase > PHASES/3:
return 1.25**(2*PHASES/3 - phase) *TXNS_PER_SEC
else:
return 1.25**(phase)*TXNS_PER_SEC
def normal():
print("Max Txns Per Sec %f"%TXNS_PER_SEC)
backlog = 0
results_unconfirmed = [0]*SAMPLES
total_time = [0]*SAMPLES
for phase in range(PHASES):
for i in range(PHASE_LENGTH*phase, PHASE_LENGTH*(1+phase)):
block_time = np.random.exponential(AVG_INTERVAL)
total_time[i] = block_time
# Equivalent to the sum of one poisson per block time
# I.E., \sum_1_n Pois(a) = Pois(a*n)
txns = np.random.poisson(get_rate(phase)* block_time)
weight = txns*AVG_TX + backlog
if weight > MAX_BLOCK_SIZE:
backlog = weight - MAX_BLOCK_SIZE
else:
backlog = 0
results_unconfirmed[i] = backlog/AVG_TX
return results_unconfirmed, np.cumsum(total_time)/(60*60*24.0)
def compressed(rate_multiplier = 1):
print("Max Txns Per Sec %f"%TXNS_PER_SEC)
backlog = 0
secondary_backlog = 0
results = [0]*SAMPLES
results_lo_priority = [0]*SAMPLES
results_confirmed = [0]*SAMPLES
results_unconfirmed = [0]*SAMPLES
results_yet_to_spend = [0]*SAMPLES
total_time = [0]*(SAMPLES)
for phase in range(PHASES):
for i in range(PHASE_LENGTH*phase, PHASE_LENGTH*(1+phase)):
block_time = np.random.poisson(AVG_INTERVAL)
total_time[i] = block_time
txns = np.random.poisson(rate_multiplier*get_rate(phase)*block_time)
postponed = txns * COMPRESSABLE
weight = (txns-postponed)*AVG_TX + backlog
secondary_backlog += postponed*133 + postponed*34 # Total extra work
if weight > MAX_BLOCK_SIZE:
results_confirmed[i] += MAX_BLOCK_SIZE - AVG_TX
backlog = weight - MAX_BLOCK_SIZE
else:
space = MAX_BLOCK_SIZE - weight
secondary_backlog = max(secondary_backlog-space, 0)
backlog = 0
results_unconfirmed[i] = float(backlog)/AVG_TX
results_yet_to_spend[i] = secondary_backlog/2/AVG_TX
return results_unconfirmed, results_yet_to_spend, np.cumsum(total_time)/(60*60*24.0)
DAYS = np.array(range(SAMPLES))/144
def make_patch_spines_invisible(ax):
ax.set_frame_on(True)
ax.patch.set_visible(False)
for sp in ax.spines.values():
sp.set_visible(False)
if __name__ == "__main__":
normal_txs, blocktimes_n = normal()
compressed_txs, unspendable, blocktimes_c1 = compressed()
compressed_txs2, unspendable2, blocktimes_c2 = compressed(2)
fig, host = plt.subplots()
host.set_title("Transaction Compression Performance with %d%% Adoption During Spike"%(100*COMPRESSABLE))
fig.subplots_adjust(right=0.75)
par1 = host.twinx()
par2 = host.twinx()
par3 = host.twinx()
par2.spines["right"].set_position(("axes", 1.2))
make_patch_spines_invisible(par2)
par2.spines["right"].set_visible(True)
par3.spines["right"].set_position(("axes", 1.4))
make_patch_spines_invisible(par3)
par3.spines["right"].set_visible(True)
host.set_xlabel("Block Days")
host.set_ylabel("Transactions per Second")
p5, = host.plot(range(PHASES), [get_rate(p) for p in range(PHASES)], "k-", label="Transactions Per Second (1x Rate)")
p6, = host.plot(range(PHASES), [2*get_rate(p) for p in range(PHASES)], "k:", label="Transactions Per Second (2x Rate)")
host.yaxis.label.set_color(p5.get_color())
par2.set_ylabel("Unconfirmed Transactions")
#p1, = par2.plot(DAYS, (-np.array(compressed_txs) + np.array(normal_txs)), "b-.", label = "Mempool Delta")
p1, = par2.plot(blocktimes_n, normal_txs, "g", label="Mempool without Congestion Control")
p2, = par2.plot(blocktimes_c1, compressed_txs,"y", label="Mempool with Congestion Control (1x Rate)")
p3, = par2.plot(blocktimes_c2, compressed_txs2,"m", label="Mempool with Congestion Control (2x Rate)")
p_full_block, = par2.plot([DAYS[0], DAYS[-1]], [MAX_BLOCK_SIZE/AVG_TX]*2, "b.-", label="Maximum Average Transactions Per Block")
par2.yaxis.label.set_color(p2.get_color())
par1.set_ylabel("Confirmed but Pending Transactions")
p4, = par1.plot(blocktimes_c1, unspendable2, "c", label="Congestion Control Pending (2x Rate)")
p4, = par1.plot(blocktimes_c2, unspendable, "r", label="Congestion Control Pending (1x Rate)")
par1.yaxis.label.set_color(p4.get_color())
lines = [p1, p2, p3, p4, p5, p6, p_full_block]
host.legend(lines, [l.get_label() for l in lines])
plt.show()
|