summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--bip-0340.mediawiki2
1 files changed, 1 insertions, 1 deletions
diff --git a/bip-0340.mediawiki b/bip-0340.mediawiki
index b4e5f60..a82e810 100644
--- a/bip-0340.mediawiki
+++ b/bip-0340.mediawiki
@@ -87,7 +87,7 @@ expensive conversion to affine coordinates first. This would even be the case if
For ''P'', using the third option comes at the cost of computing a Jacobi symbol (test for squaredness) at key generation or signing time, without avoiding a conversion to affine coordinates (as public keys will use affine coordinates anyway). We choose the second option, making public keys implicitly have an even Y coordinate, to maximize compatibility with existing key generation algorithms and infrastructure.
-Implicit Y coordinates are not a reduction in security when expressed as the number of elliptic curve operations an attacker is expected to perform to compute the secret key. An attacker can normalize any given public key to a point whose Y coordinate is even by negating the point if necessary. This is just a subtraction of field elements and not an elliptic curve operation<ref>This can be formalized by a simple reduction that reduces an attack on Schnorr signatures with implicit Y coordinates to an attack to Schnorr signatures with explicit Y coordinates. The reduction works by reencoding public keys and negating the result of the hash function, which is modeled as random oracle, whenever the challenge public key has an explicit Y coordinate that is odd. A proof sketch can be found [https://medium.com/blockstream/reducing-bitcoin-transaction-sizes-with-x-only-pubkeys-f86476af05d7 here].</ref>.
+Despite halving the size of the set of valid public keys, implicit Y coordinates are not a reduction in security. Informally, if a fast algorithm existed to compute the discrete logarithm of an X-only public key, then it could also be used to compute the discrete logarithm of a full public key: apply it to the X coordinate, and then optionally negate the result. This shows that breaking an X-only public key can be at most a small constant term faster than breaking a full one.<ref>This can be formalized by a simple reduction that reduces an attack on Schnorr signatures with implicit Y coordinates to an attack to Schnorr signatures with explicit Y coordinates. The reduction works by reencoding public keys and negating the result of the hash function, which is modeled as random oracle, whenever the challenge public key has an explicit Y coordinate that is odd. A proof sketch can be found [https://medium.com/blockstream/reducing-bitcoin-transaction-sizes-with-x-only-pubkeys-f86476af05d7 here].</ref>.
'''Tagged Hashes''' Cryptographic hash functions are used for multiple purposes in the specification below and in Bitcoin in general. To make sure hashes used in one context can't be reinterpreted in another one, hash functions can be tweaked with a context-dependent tag name, in such a way that collisions across contexts can be assumed to be infeasible. Such collisions obviously can not be ruled out completely, but only for schemes using tagging with a unique name. As for other schemes collisions are at least less likely with tagging than without.