diff options
author | Luke Dashjr <luke_github1@dashjr.org> | 2020-04-30 14:19:29 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-04-30 14:19:29 +0000 |
commit | 187fabb1de081f5934771272a90e9f1ac784b672 (patch) | |
tree | 757b35c83f722943376844cb71e47834dfd9ae5d /bip-0340.mediawiki | |
parent | ba1d58250716be1697a633e9624d9237b15dba7d (diff) | |
parent | cf2937c8111919ae9edf020cd39af288969fd5e4 (diff) |
Merge pull request #893 from sipa/bip-taproot
BIP 340 improvements
Diffstat (limited to 'bip-0340.mediawiki')
-rw-r--r-- | bip-0340.mediawiki | 63 |
1 files changed, 35 insertions, 28 deletions
diff --git a/bip-0340.mediawiki b/bip-0340.mediawiki index d2f92db..b4e5f60 100644 --- a/bip-0340.mediawiki +++ b/bip-0340.mediawiki @@ -2,7 +2,7 @@ BIP: 340 Title: Schnorr Signatures for secp256k1 Author: Pieter Wuille <pieter.wuille@gmail.com> - Jonas Nick <Jonas Nick <jonasd.nick@gmail.com> + Jonas Nick <jonasd.nick@gmail.com> Tim Ruffing <crypto@timruffing.de> Comments-Summary: No comments yet. Comments-URI: https://github.com/bitcoin/bips/wiki/Comments:BIP-0340 @@ -40,7 +40,7 @@ propose a new standard, a number of improvements not specific to Schnorr signatu made: * '''Signature encoding''': Instead of using [https://en.wikipedia.org/wiki/X.690#DER_encoding DER]-encoding for signatures (which are variable size, and up to 72 bytes), we can use a simple fixed 64-byte format. -* '''Public key encoding''': Instead of using ''compressed'' 33-byte encodings of elliptic curve points which are common in Bitcoin today, public keys in this proposal are encoded as 32 bytes. +* '''Public key encoding''': Instead of using [https://www.secg.org/sec1-v2.pdf ''compressed''] 33-byte encodings of elliptic curve points which are common in Bitcoin today, public keys in this proposal are encoded as 32 bytes. * '''Batch verification''': The specific formulation of ECDSA signatures that is standardized cannot be verified more efficiently in batch compared to individually, unless additional witness data is added. Changing the signature scheme offers an opportunity to address this. * '''Completely specified''': To be safe for usage in consensus systems, the verification algorithm must be completely specified at the byte level. This guarantees that nobody can construct a signature that is valid to some verifiers but not all. This is traditionally not a requirement for digital signature schemes, and the lack of exact specification for the DER parsing of ECDSA signatures has caused problems for Bitcoin [https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-July/009697.html in the past], needing [[bip-0066.mediawiki|BIP66]] to address it. In this document we aim to meet this property by design. For batch verification, which is inherently non-deterministic as the verifier can choose their batches, this property implies that the outcome of verification may only differ from individual verifications with negligible probability, even to an attacker who intentionally tries to make batch- and non-batch verification differ. @@ -85,9 +85,9 @@ In the case of ''R'' the third option is slower at signing time but a bit faster for elliptic curve operations). The two other options require a possibly expensive conversion to affine coordinates first. This would even be the case if the sign or oddness were explicitly coded (option 2 in the list above). We therefore choose option 3. -For ''P'' the speed of signing and verification does not significantly differ between any of the three options because affine coordinates of the point have to be computed anyway. For consistency reasons we choose the same option as for ''R''. The signing algorithm ensures that the signature is valid under the correct public key by negating the secret key if necessary. +For ''P'', using the third option comes at the cost of computing a Jacobi symbol (test for squaredness) at key generation or signing time, without avoiding a conversion to affine coordinates (as public keys will use affine coordinates anyway). We choose the second option, making public keys implicitly have an even Y coordinate, to maximize compatibility with existing key generation algorithms and infrastructure. -Implicit Y coordinates are not a reduction in security when expressed as the number of elliptic curve operations an attacker is expected to perform to compute the secret key. An attacker can normalize any given public key to a point whose Y coordinate is a square by negating the point if necessary. This is just a subtraction of field elements and not an elliptic curve operation<ref>This can be formalized by a simple reduction that reduces an attack on Schnorr signatures with implicit Y coordinates to an attack to Schnorr signatures with explicit Y coordinates. The reduction works by reencoding public keys and negating the result of the hash function, which is modeled as random oracle, whenever the challenge public key has an explicit Y coordinate that is not a square. A proof sketch can be found [https://medium.com/blockstream/reducing-bitcoin-transaction-sizes-with-x-only-pubkeys-f86476af05d7 here].</ref>. +Implicit Y coordinates are not a reduction in security when expressed as the number of elliptic curve operations an attacker is expected to perform to compute the secret key. An attacker can normalize any given public key to a point whose Y coordinate is even by negating the point if necessary. This is just a subtraction of field elements and not an elliptic curve operation<ref>This can be formalized by a simple reduction that reduces an attack on Schnorr signatures with implicit Y coordinates to an attack to Schnorr signatures with explicit Y coordinates. The reduction works by reencoding public keys and negating the result of the hash function, which is modeled as random oracle, whenever the challenge public key has an explicit Y coordinate that is odd. A proof sketch can be found [https://medium.com/blockstream/reducing-bitcoin-transaction-sizes-with-x-only-pubkeys-f86476af05d7 here].</ref>. '''Tagged Hashes''' Cryptographic hash functions are used for multiple purposes in the specification below and in Bitcoin in general. To make sure hashes used in one context can't be reinterpreted in another one, hash functions can be tweaked with a context-dependent tag name, in such a way that collisions across contexts can be assumed to be infeasible. Such collisions obviously can not be ruled out completely, but only for schemes using tagging with a unique name. As for other schemes collisions are at least less likely with tagging than without. @@ -95,7 +95,7 @@ For example, without tagged hashing a BIP340 signature could also be valid for a This proposal suggests to include the tag by prefixing the hashed data with ''SHA256(tag) || SHA256(tag)''. Because this is a 64-byte long context-specific constant and the ''SHA256'' block size is also 64 bytes, optimized implementations are possible (identical to SHA256 itself, but with a modified initial state). Using SHA256 of the tag name itself is reasonably simple and efficient for implementations that don't choose to use the optimization. -'''Final scheme''' As a result, our final scheme ends up using public key ''pk'' which is the X coordinate of a point ''P'' on the curve whose Y coordinate is a square and signatures ''(r,s)'' where ''r'' is the X coordinate of a point ''R'' whose Y coordinate is a square. The signature satisfies ''s⋅G = R + tagged_hash(r || pk || m)⋅P''. +'''Final scheme''' As a result, our final scheme ends up using public key ''pk'' which is the X coordinate of a point ''P'' on the curve whose Y coordinate is even and signatures ''(r,s)'' where ''r'' is the X coordinate of a point ''R'' whose Y coordinate is a square. The signature satisfies ''s⋅G = R + tagged_hash(r || pk || m)⋅P''. === Specification === @@ -117,30 +117,33 @@ The following conventions are used, with constants as defined for [https://www.s ** The function ''int(x)'', where ''x'' is a 32-byte array, returns the 256-bit unsigned integer whose most significant byte first encoding is ''x''. ** The function ''is_square(x)'', where ''x'' is an integer, returns whether or not ''x'' is a quadratic residue modulo ''p''. Since ''p'' is prime, it is equivalent to the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(x / p) = x<sup>(p-1)/2</sup> mod p'' being equal to ''1''<ref>For points ''P'' on the secp256k1 curve it holds that ''y(P)<sup>(p-1)/2</sup> ≠ 0 mod p''.</ref>. ** The function ''has_square_y(P)'', where ''P'' is a point, is defined as ''not is_infinite(P) and is_square(y(P))''<ref>For points ''P'' on the secp256k1 curve it holds that ''has_square_y(P) = not has_square_y(-P)''.</ref>. -** The function ''lift_x(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x''<ref> +** The function ''has_even_y(x)'', where ''P'' is a point, returns ''y(P) mod 2 = 0''. +** The function ''lift_x_square_y(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x''<ref> Given a candidate X coordinate ''x'' in the range ''0..p-1'', there exist either exactly two or exactly zero valid Y coordinates. If no valid Y coordinate exists, then ''x'' is not a valid X coordinate either, i.e., no point ''P'' exists for which ''x(P) = x''. The valid Y coordinates for a given candidate ''x'' are the square roots of ''c = x<sup>3</sup> + 7 mod p'' and they can be computed as ''y = ±c<sup>(p+1)/4</sup> mod p'' (see [https://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus Quadratic residue]) if they exist, which can be checked by squaring and comparing with ''c''. </ref> and ''has_square_y(P)''<ref> - If ''P := lift_x(x)'' does not fail, then ''y := y(P) = c<sup>(p+1)/4</sup> mod p'' is square. Proof: If ''lift_x'' does not fail, ''y'' is a square root of ''c'' and therefore the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(c / p)'' is ''c<sup>(p-1)/2</sup> = 1 mod p''. Because the Legendre symbol ''(y / p)'' is ''y<sup>(p-1)/2</sup> mod p = c<sup>((p+1)/4)((p-1)/2)</sup> mod p = 1<sup>((p+1)/4)</sup> mod p = 1 mod p'', ''y'' is square. -</ref>, or fails if no such point exists. The function ''lift_x(x)'' is equivalent to the following pseudocode: + If ''P := lift_x_square_y(x)'' does not fail, then ''y := y(P) = c<sup>(p+1)/4</sup> mod p'' is square. Proof: If ''lift_x_square_y'' does not fail, ''y'' is a square root of ''c'' and therefore the [https://en.wikipedia.org/wiki/Legendre_symbol Legendre symbol] ''(c / p)'' is ''c<sup>(p-1)/2</sup> = 1 mod p''. Because the Legendre symbol ''(y / p)'' is ''y<sup>(p-1)/2</sup> mod p = c<sup>((p+1)/4)((p-1)/2)</sup> mod p = 1<sup>((p+1)/4)</sup> mod p = 1 mod p'', ''y'' is square. +</ref>, or fails if no such point exists. The function ''lift_x_square_y(x)'' is equivalent to the following pseudocode: *** Let ''c = x<sup>3</sup> + 7 mod p''. *** Let ''y = c<sup>(p+1)/4</sup> mod p''. *** Fail if ''c ≠ y<sup>2</sup> mod p''. *** Return the unique point ''P'' such that ''x(P) = x'' and ''y(P) = y'', or fail if no such point exists. -** The function ''point(x)'', where ''x'' is a 32-byte array, returns the point ''P = lift_x(int(x))''. +** The function ''lift_x_even_y(x)'', where ''x'' is an integer in range ''0..p-1'', returns the point ''P'' for which ''x(P) = x'' and ''has_even_y(P)'', or fails if no such point exists. If such a point does exist, it is always equal to either ''lift_x_square_y(x)'' or ''-lift_x_square_y(x)'', which suggests implementing it in terms of ''lift_x_square_y'', and optionally negating the result. ** The function ''hash<sub>tag</sub>(x)'' where ''tag'' is a UTF-8 encoded tag name and ''x'' is a byte array returns the 32-byte hash ''SHA256(SHA256(tag) || SHA256(tag) || x)''. ==== Public Key Generation ==== Input: -* The secret key ''sk'': a 32-byte array, generated uniformly at random +* The secret key ''sk'': a 32-byte array, freshly generated uniformly at random The algorithm ''PubKey(sk)'' is defined as: -* Let ''d = int(sk)''. -* Fail if ''d = 0'' or ''d ≥ n''. -* Return ''bytes(d⋅G)''. +* Let ''d' = int(sk)''. +* Fail if ''d' = 0'' or ''d' ≥ n''. +* Return ''bytes(d'⋅G)''. Note that we use a very different public key format (32 bytes) than the ones used by existing systems (which typically use elliptic curve points as public keys, or 33-byte or 65-byte encodings of them). A side effect is that ''PubKey(sk) = PubKey(bytes(n - int(sk))'', so every public key has two corresponding secret keys. +==== Public Key Conversion ==== + As an alternative to generating keys randomly, it is also possible and safe to repurpose existing key generation algorithms for ECDSA in a compatible way. The secret keys constructed by such an algorithm can be used as ''sk'' directly. The public keys constructed by such an algorithm (assuming they use the 33-byte compressed encoding) need to be converted by dropping the first byte. Specifically, [[bip-0032.mediawiki|BIP32]] and schemes built on top of it remain usable. ==== Default Signing ==== @@ -148,33 +151,37 @@ As an alternative to generating keys randomly, it is also possible and safe to r Input: * The secret key ''sk'': a 32-byte array * The message ''m'': a 32-byte array +* Auxiliary random data ''a'': a 32-byte array The algorithm ''Sign(sk, m)'' is defined as: * Let ''d' = int(sk)'' * Fail if ''d' = 0'' or ''d' ≥ n'' * Let ''P = d'⋅G'' -* Let ''d = d' '' if ''has_square_y(P)'', otherwise let ''d = n - d' ''. -* Let ''rand = hash<sub>BIPSchnorrDerive</sub>(bytes(d) || m)''. +* Let ''d = d' '' if ''has_even_y(P)'', otherwise let ''d = n - d' ''. +* Let ''t'' be the byte-wise xor of ''bytes(d)'' and ''H<sub>BIP340/aux</sub>(a)''<ref>The auxiliary random data is hashed (with a unique tag) as a precaution against situations where the randomness may be correlated with the private key itself. It is xored with the private key (rather than combined with it in a hash) to reduce the number of operations exposed to the actual secret key.</ref>. +* Let ''rand = hash<sub>BIP340/nonce</sub>(t || bytes(P) || m)''<ref>Including the [https://moderncrypto.org/mail-archive/curves/2020/001012.html public key as input to the nonce hash] helps ensure the robustness of the signing algorithm by preventing leakage of the secret key if the calculation of the public key ''P'' is performed incorrectly or maliciously, for example if it is left to the caller for performance reasons.</ref>. * Let ''k' = int(rand) mod n''<ref>Note that in general, taking a uniformly random 256-bit integer modulo the curve order will produce an unacceptably biased result. However, for the secp256k1 curve, the order is sufficiently close to ''2<sup>256</sup>'' that this bias is not observable (''1 - n / 2<sup>256</sup>'' is around ''1.27 * 2<sup>-128</sup>'').</ref>. * Fail if ''k' = 0''. * Let ''R = k'⋅G''. * Let ''k = k' '' if ''has_square_y(R)'', otherwise let ''k = n - k' ''. -* Let ''e = int(hash<sub>BIPSchnorr</sub>(bytes(R) || bytes(P) || m)) mod n''. -* Return the signature ''bytes(R) || bytes((k + ed) mod n)''. - -==== Alternative Signing ==== +* Let ''e = int(hash<sub>BIP340/challenge</sub>(bytes(R) || bytes(P) || m)) mod n''. +* Let ''sig = bytes(R) || bytes((k + ed) mod n)''. +* If ''Verify(bytes(P), m, sig)'' (see below) returns failure, abort<ref>Verifying the signature before leaving the signer prevents random or attacker provoked computation errors. This prevents publishing invalid signatures which may leak information about the secret key. It is recommended, but can be omitted if the computation cost is prohibitive.</ref>. +* Return the signature ''sig''. -It should be noted that various alternative signing algorithms can be used to produce equally valid signatures. The algorithm in the previous section is deterministic, i.e., it will always produce the same signature for a given message and secret key. This method does not need a random number generator (RNG) at signing time and is thus trivially robust against failures of RNGs. Alternatively the 32-byte ''rand'' value may be generated in other ways, producing a different but still valid signature (in other words, this is not a ''unique'' signature scheme). '''No matter which method is used to generate the ''rand'' value, the value must be a fresh uniformly random 32-byte string which is not even partially predictable for the attacker.''' +The auxiliary random data should be set to fresh randomness generated at signing time, resulting in what is called a ''synthetic nonce''. Using 32 bytes of randomness is optimal. If obtaining randomness is expensive, 16 random bytes can be padded with 16 null bytes to obtain a 32-byte array. If randomness is not available at all at signing time, a simple counter wide enough to not repeat in practice (e.g., 64 bits or wider) and padded with null bytes to a 32 byte-array can be used, or even the constant array with 32 null bytes. Using any non-repeating value increases protection against [https://moderncrypto.org/mail-archive/curves/2017/000925.html fault injection attacks]. Using unpredictable randomness additionally increases protection against other side-channel attacks, and is '''recommended whenever available'''. Note that while this means the resulting nonce is not deterministic, the randomness is only supplemental to security. The normal security properties (excluding side-channel attacks) do not depend on the quality of the signing-time RNG. -'''Synthetic nonces''' For instance when a RNG is available, 32 bytes of RNG output can be appended to the input to ''hash<sub>BIPSchnorrDerive</sub>''. This will change the corresponding line in the signing algorithm to ''rand = hash<sub>BIPSchnorrDerive</sub>(bytes(d) || m || get_32_bytes_from_rng())'', where ''get_32_bytes_from_rng()'' is the call to the RNG. It is safe to add the output of a low-entropy RNG. Adding high-entropy RNG output may improve protection against [https://moderncrypto.org/mail-archive/curves/2017/000925.html fault injection attacks and side-channel attacks]. Therefore, '''synthetic nonces are recommended in settings where these attacks are a concern''' - in particular on offline signing devices. +==== Alternative Signing ==== -'''Verifying the signing output''' To prevent random or attacker provoked computation errors, the signature can be verified with the verification algorithm defined below before leaving the signer. This prevents publishing invalid signatures which may leak information about the secret key. '''If the additional computational cost is not a concern, it is recommended to verify newly created signatures and reject them in case of failure.''' +It should be noted that various alternative signing algorithms can be used to produce equally valid signatures. The 32-byte ''rand'' value may be generated in other ways, producing a different but still valid signature (in other words, this is not a ''unique'' signature scheme). '''No matter which method is used to generate the ''rand'' value, the value must be a fresh uniformly random 32-byte string which is not even partially predictable for the attacker.''' For nonces without randomness this implies that the same inputs must not be presented in another context. This can be most reliably accomplished by not reusing the same private key across different signing schemes. For example, if the ''rand'' value was computed as per RFC6979 and the same secret key is used in deterministic ECDSA with RFC6979, the signatures can leak the secret key through nonce reuse. '''Nonce exfiltration protection''' It is possible to strengthen the nonce generation algorithm using a second device. In this case, the second device contributes randomness which the actual signer provably incorporates into its nonce. This prevents certain attacks where the signer device is compromised and intentionally tries to leak the secret key through its nonce selection. '''Multisignatures''' This signature scheme is compatible with various types of multisignature and threshold schemes such as [https://eprint.iacr.org/2018/068 MuSig], where a single public key requires holders of multiple secret keys to participate in signing (see Applications below). '''It is important to note that multisignature signing schemes in general are insecure with the ''rand'' generation from the default signing algorithm above (or any other deterministic method).''' +'''Precomputed public key data''' For many uses the compressed 33-byte encoding of the public key corresponding to the secret key may already be known, making it easy to evaluate ''has_even_y(P)'' and ''bytes(P)''. As such, having signers supply this directly may be more efficient than recalculating the public key from the secret key. However, if this optimization is used and additionally the signature verification at the end of the signing algorithm is dropped for increased efficiency, signers must ensure the public key is correctly calculated and not taken from untrusted sources. + ==== Verification ==== Input: @@ -183,17 +190,17 @@ Input: * A signature ''sig'': a 64-byte array The algorithm ''Verify(pk, m, sig)'' is defined as: -* Let ''P = point(pk)''; fail if ''point(pk)'' fails. +* Let ''P = lift_x_even_y(int(pk))''; fail if that fails. * Let ''r = int(sig[0:32])''; fail if ''r ≥ p''. * Let ''s = int(sig[32:64])''; fail if ''s ≥ n''. -* Let ''e = int(hash<sub>BIPSchnorr</sub>(bytes(r) || bytes(P) || m)) mod n''. +* Let ''e = int(hash<sub>BIP340/challenge</sub>(bytes(r) || bytes(P) || m)) mod n''. * Let ''R = s⋅G - e⋅P''. * Fail if ''not has_square_y(R)'' or ''x(R) ≠ r''. * Return success iff no failure occurred before reaching this point. For every valid secret key ''sk'' and message ''m'', ''Verify(PubKey(sk),m,Sign(sk,m))'' will succeed. -Note that the correctness of verification relies on the fact that ''point(pk)'' always returns a point with a square Y coordinate. A hypothetical verification algorithm that treats points as public keys, and takes the point ''P'' directly as input would fail any time a point with non-square Y is used. While it is possible to correct for this by negating points with non-square Y coordinate before further processing, this would result in a scheme where every (message, signature) pair is valid for two public keys (a type of malleability that exists for ECDSA as well, but we don't wish to retain). We avoid these problems by treating just the X coordinate as public key. +Note that the correctness of verification relies on the fact that ''lift_x_even_y'' always returns a point with an even Y coordinate. A hypothetical verification algorithm that treats points as public keys, and takes the point ''P'' directly as input would fail any time a point with odd Y is used. While it is possible to correct for this by negating points with odd Y coordinate before further processing, this would result in a scheme where every (message, signature) pair is valid for two public keys (a type of malleability that exists for ECDSA as well, but we don't wish to retain). We avoid these problems by treating just the X coordinate as public key. ==== Batch Verification ==== @@ -206,11 +213,11 @@ Input: The algorithm ''BatchVerify(pk<sub>1..u</sub>, m<sub>1..u</sub>, sig<sub>1..u</sub>)'' is defined as: * Generate ''u-1'' random integers ''a<sub>2...u</sub>'' in the range ''1...n-1''. They are generated deterministically using a [https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator CSPRNG] seeded by a cryptographic hash of all inputs of the algorithm, i.e. ''seed = seed_hash(pk<sub>1</sub>..pk<sub>u</sub> || m<sub>1</sub>..m<sub>u</sub> || sig<sub>1</sub>..sig<sub>u</sub> )''. A safe choice is to instantiate ''seed_hash'' with SHA256 and use [https://tools.ietf.org/html/rfc8439 ChaCha20] with key ''seed'' as a CSPRNG to generate 256-bit integers, skipping integers not in the range ''1...n-1''. * For ''i = 1 .. u'': -** Let ''P<sub>i</sub> = point(pk<sub>i</sub>)''; fail if ''point(pk<sub>i</sub>)'' fails. +** Let ''P<sub>i</sub> = lift_x_even_y(int(pk<sub>i</sub>))''; fail if it fails. ** Let ''r<sub>i</sub> = int(sig<sub>i</sub>[0:32])''; fail if ''r<sub>i</sub> ≥ p''. ** Let ''s<sub>i</sub> = int(sig<sub>i</sub>[32:64])''; fail if ''s<sub>i</sub> ≥ n''. -** Let ''e<sub>i</sub> = int(hash<sub>BIPSchnorr</sub>(bytes(r<sub>i</sub>) || bytes(P<sub>i</sub>) || m<sub>i</sub>)) mod n''. -** Let ''R<sub>i</sub> = lift_x(r<sub>i</sub>)''; fail if ''lift_x(r<sub>i</sub>)'' fails. +** Let ''e<sub>i</sub> = int(hash<sub>BIP340/challenge</sub>(bytes(r<sub>i</sub>) || bytes(P<sub>i</sub>) || m<sub>i</sub>)) mod n''. +** Let ''R<sub>i</sub> = lift_x_square_y(r<sub>i</sub>)''; fail if ''lift_x_square_y(r<sub>i</sub>)'' fails. * Fail if ''(s<sub>1</sub> + a<sub>2</sub>s<sub>2</sub> + ... + a<sub>u</sub>s<sub>u</sub>)⋅G ≠ R<sub>1</sub> + a<sub>2</sub>⋅R<sub>2</sub> + ... + a<sub>u</sub>⋅R<sub>u</sub> + e<sub>1</sub>⋅P<sub>1</sub> + (a<sub>2</sub>e<sub>2</sub>)⋅P<sub>2</sub> + ... + (a<sub>u</sub>e<sub>u</sub>)⋅P<sub>u</sub>''. * Return success iff no failure occurred before reaching this point. |