1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
__all__ = ['aes_encrypt', 'key_expansion', 'aes_ctr_decrypt', 'aes_decrypt_text']
import base64
from math import ceil
BLOCK_SIZE_BYTES = 16
def aes_ctr_decrypt(data, key, counter):
"""
Decrypt with aes in counter mode
@param {int[]} data cipher
@param {int[]} key 16/24/32-Byte cipher key
@param {instance} counter Instance whose next_value function (@returns {int[]} 16-Byte block)
returns the next counter block
@returns {int[]} decrypted data
"""
expanded_key = key_expansion(key)
block_count = int(ceil(float(len(data)) / BLOCK_SIZE_BYTES))
decrypted_data=[]
for i in range(block_count):
counter_block = counter.next_value()
block = data[i*BLOCK_SIZE_BYTES : (i+1)*BLOCK_SIZE_BYTES]
block += [0]*(BLOCK_SIZE_BYTES - len(block))
cipher_counter_block = aes_encrypt(counter_block, expanded_key)
decrypted_data += xor(block, cipher_counter_block)
decrypted_data = decrypted_data[:len(data)]
return decrypted_data
def key_expansion(data):
"""
Generate key schedule
@param {int[]} data 16/24/32-Byte cipher key
@returns {int[]} 176/208/240-Byte expanded key
"""
data = data[:] # copy
rcon_iteration = 1
key_size_bytes = len(data)
expanded_key_size_bytes = (key_size_bytes/4 + 7) * BLOCK_SIZE_BYTES
while len(data) < expanded_key_size_bytes:
temp = data[-4:]
temp = key_schedule_core(temp, rcon_iteration)
rcon_iteration += 1
data += xor(temp, data[-key_size_bytes : 4-key_size_bytes])
for _ in range(3):
temp = data[-4:]
data += xor(temp, data[-key_size_bytes : 4-key_size_bytes])
if key_size_bytes == 32:
temp = data[-4:]
temp = sub_bytes(temp)
data += xor(temp, data[-key_size_bytes : 4-key_size_bytes])
for _ in range(3 if key_size_bytes == 32 else 2 if key_size_bytes == 24 else 0):
temp = data[-4:]
data += xor(temp, data[-key_size_bytes : 4-key_size_bytes])
data = data[:expanded_key_size_bytes]
return data
def aes_encrypt(data, expanded_key):
"""
Encrypt one block with aes
@param {int[]} data 16-Byte state
@param {int[]} expanded_key 176/208/240-Byte expanded key
@returns {int[]} 16-Byte cipher
"""
rounds = len(expanded_key) / BLOCK_SIZE_BYTES - 1
data = xor(data, expanded_key[:BLOCK_SIZE_BYTES])
for i in range(1, rounds+1):
data = sub_bytes(data)
data = shift_rows(data)
if i != rounds:
data = mix_columns(data)
data = xor(data, expanded_key[i*BLOCK_SIZE_BYTES : (i+1)*BLOCK_SIZE_BYTES])
return data
def aes_decrypt_text(data, password, key_size_bytes):
"""
Decrypt text
- The first 8 Bytes of decoded 'data' are the 8 high Bytes of the counter
- The cipher key is retrieved by encrypting the first 16 Byte of 'password'
with the first 'key_size_bytes' Bytes from 'password' (if necessary filled with 0's)
- Mode of operation is 'counter'
@param {str} data Base64 encoded string
@param {str,unicode} password Password (will be encoded with utf-8)
@param {int} key_size_bytes Possible values: 16 for 128-Bit, 24 for 192-Bit or 32 for 256-Bit
@returns {str} Decrypted data
"""
NONCE_LENGTH_BYTES = 8
data = map(lambda c: ord(c), base64.b64decode(data))
password = map(lambda c: ord(c), password.encode('utf-8'))
key = password[:key_size_bytes] + [0]*(key_size_bytes - len(password))
key = aes_encrypt(key[:BLOCK_SIZE_BYTES], key_expansion(key)) * (key_size_bytes / BLOCK_SIZE_BYTES)
nonce = data[:NONCE_LENGTH_BYTES]
cipher = data[NONCE_LENGTH_BYTES:]
class Counter:
__value = nonce + [0]*(BLOCK_SIZE_BYTES - NONCE_LENGTH_BYTES)
def next_value(self):
temp = self.__value
self.__value = inc(self.__value)
return temp
decrypted_data = aes_ctr_decrypt(cipher, key, Counter())
plaintext = ''.join(map(lambda x: chr(x), decrypted_data))
return plaintext
RCON = (0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36)
SBOX = (0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16)
MIX_COLUMN_MATRIX = ((2,3,1,1),
(1,2,3,1),
(1,1,2,3),
(3,1,1,2))
def sub_bytes(data):
return map(lambda x: SBOX[x], data)
def rotate(data):
return data[1:] + [data[0]]
def key_schedule_core(data, rcon_iteration):
data = rotate(data)
data = sub_bytes(data)
data[0] = data[0] ^ RCON[rcon_iteration]
return data
def xor(data1, data2):
return map(lambda (x,y): x^y, zip(data1, data2))
def mix_column(data):
data_mixed = []
for row in range(4):
mixed = 0
for column in range(4):
addend = data[column]
if MIX_COLUMN_MATRIX[row][column] in (2,3):
addend <<= 1
if addend > 0xff:
addend &= 0xff
addend ^= 0x1b
if MIX_COLUMN_MATRIX[row][column] == 3:
addend ^= data[column]
mixed ^= addend & 0xff
data_mixed.append(mixed)
return data_mixed
def mix_columns(data):
data_mixed = []
for i in range(4):
column = data[i*4 : (i+1)*4]
data_mixed += mix_column(column)
return data_mixed
def shift_rows(data):
data_shifted = []
for column in range(4):
for row in range(4):
data_shifted.append( data[((column + row) & 0b11) * 4 + row] )
return data_shifted
def inc(data):
data = data[:] # copy
for i in range(len(data)-1,-1,-1):
if data[i] == 255:
data[i] = 0
else:
data[i] = data[i] + 1
break
return data
|