aboutsummaryrefslogtreecommitdiff
path: root/lib/libsquish/squish.cpp
blob: c0ce0584577964741068e59c5a8beb146d8fc6c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/* -----------------------------------------------------------------------------

	Copyright (c) 2006 Simon Brown                          si@sjbrown.co.uk

	Permission is hereby granted, free of charge, to any person obtaining
	a copy of this software and associated documentation files (the 
	"Software"), to	deal in the Software without restriction, including
	without limitation the rights to use, copy, modify, merge, publish,
	distribute, sublicense, and/or sell copies of the Software, and to 
	permit persons to whom the Software is furnished to do so, subject to 
	the following conditions:

	The above copyright notice and this permission notice shall be included
	in all copies or substantial portions of the Software.

	THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
	OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
	MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
	IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY 
	CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 
	TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 
	SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
	
   -------------------------------------------------------------------------- */

#include <string.h>
#include <squish.h>
#include "colourset.h"
#include "maths.h"
#include "rangefit.h"
#include "clusterfit.h"
#include "colourblock.h"
#include "alpha.h"
#include "singlecolourfit.h"

namespace squish {

static int FixFlags( int flags )
{
	// grab the flag bits
	int method = flags & ( kDxt1 | kDxt3 | kDxt5 );
	int fit = flags & ( kColourIterativeClusterFit | kColourClusterFit | kColourRangeFit );
	int extra = flags & ( kWeightColourByAlpha | kSourceBGRA );
	
	// set defaults
	if( method != kDxt3 && method != kDxt5 )
		method = kDxt1;
	if( fit != kColourRangeFit && fit != kColourIterativeClusterFit )
		fit = kColourClusterFit;
		
	// done
	return method | fit | extra;
}

void CompressMasked( u8 const* rgba, int mask, void* block, int flags, float* metric )
{
	// fix any bad flags
	flags = FixFlags( flags );

	// get the block locations
	void* colourBlock = block;
	void* alphaBock = block;
	if( ( flags & ( kDxt3 | kDxt5 ) ) != 0 )
		colourBlock = reinterpret_cast< u8* >( block ) + 8;

	// create the minimal point set
	ColourSet colours( rgba, mask, flags );
	
	// check the compression type and compress colour
	if( colours.GetCount() == 1 )
	{
		// always do a single colour fit
		SingleColourFit fit( &colours, flags );
		fit.Compress( colourBlock );
	}
	else if( ( flags & kColourRangeFit ) != 0 || colours.GetCount() == 0 )
	{
		// do a range fit
		RangeFit fit( &colours, flags, metric );
		fit.Compress( colourBlock );
	}
	else
	{
		// default to a cluster fit (could be iterative or not)
		ClusterFit fit( &colours, flags, metric );
		fit.Compress( colourBlock );
	}
	
	// compress alpha separately if necessary
	if( ( flags & kDxt3 ) != 0 )
		CompressAlphaDxt3( rgba, mask, alphaBock );
	else if( ( flags & kDxt5 ) != 0 )
		CompressAlphaDxt5( rgba, mask, alphaBock );
}

void Decompress( u8* rgba, void const* block, int flags )
{
	// fix any bad flags
	flags = FixFlags( flags );

	// get the block locations
	void const* colourBlock = block;
	void const* alphaBock = block;
	if( ( flags & ( kDxt3 | kDxt5 ) ) != 0 )
		colourBlock = reinterpret_cast< u8 const* >( block ) + 8;

	// decompress colour
	DecompressColour( rgba, colourBlock, ( flags & kDxt1 ) != 0 );

	// decompress alpha separately if necessary
	if( ( flags & kDxt3 ) != 0 )
		DecompressAlphaDxt3( rgba, alphaBock );
	else if( ( flags & kDxt5 ) != 0 )
		DecompressAlphaDxt5( rgba, alphaBock );
}

int GetStorageRequirements( int width, int height, int flags )
{
	// fix any bad flags
	flags = FixFlags( flags );
	
	// compute the storage requirements
	int blockcount = ( ( width + 3 )/4 ) * ( ( height + 3 )/4 );
	int blocksize = ( ( flags & kDxt1 ) != 0 ) ? 8 : 16;
	return blockcount*blocksize;	
}

void CopyRGBA( u8 const* source, u8* dest, int flags )
{
	if (flags & kSourceBGRA)
	{
		// convert from bgra to rgba
		dest[0] = source[2];
		dest[1] = source[1];
		dest[2] = source[0];
		dest[3] = source[3];
	}
	else
	{
		for( int i = 0; i < 4; ++i )
			*dest++ = *source++;
	}
}

void CompressImage( u8 const* rgba, int width, int height, void* blocks, int flags, float* metric )
{
	CompressImage(rgba, width, height, width*4, blocks, flags, metric);
}
  
void CompressImage( u8 const* rgba, int width, int height, int pitch, void* blocks, int flags, float* metric )
{
	// fix any bad flags
	flags = FixFlags( flags );

	// initialise the block output
	u8* targetBlock = reinterpret_cast< u8* >( blocks );
	int bytesPerBlock = ( ( flags & kDxt1 ) != 0 ) ? 8 : 16;

	// loop over blocks
	for( int y = 0; y < height; y += 4 )
	{
		for( int x = 0; x < width; x += 4 )
		{
			// build the 4x4 block of pixels
			u8 sourceRgba[16*4];
			u8* targetPixel = sourceRgba;
			int mask = 0;
			for( int py = 0; py < 4; ++py )
			{
				for( int px = 0; px < 4; ++px )
				{
					// get the source pixel in the image
					int sx = x + px;
					int sy = y + py;
					
					// enable if we're in the image
					if( sx < width && sy < height )
					{
						// copy the rgba value
						u8 const* sourcePixel = rgba + pitch*sy + 4*sx;
						CopyRGBA(sourcePixel, targetPixel, flags);
						// enable this pixel
						mask |= ( 1 << ( 4*py + px ) );
					}
					targetPixel += 4;
				}
			}
			
			// compress it into the output
			CompressMasked( sourceRgba, mask, targetBlock, flags, metric );
			
			// advance
			targetBlock += bytesPerBlock;
		}
	}
}

void DecompressImage( u8* rgba, int width, int height, void const* blocks, int flags )
{
	DecompressImage( rgba, width, height, width*4, blocks, flags );
}

void DecompressImage( u8* rgba, int width, int height, int pitch, void const* blocks, int flags )
{
	// fix any bad flags
	flags = FixFlags( flags );

	// initialise the block input
	u8 const* sourceBlock = reinterpret_cast< u8 const* >( blocks );
	int bytesPerBlock = ( ( flags & kDxt1 ) != 0 ) ? 8 : 16;

	// loop over blocks
	for( int y = 0; y < height; y += 4 )
	{
		for( int x = 0; x < width; x += 4 )
		{
			// decompress the block
			u8 targetRgba[4*16];
			Decompress( targetRgba, sourceBlock, flags );
			
			// write the decompressed pixels to the correct image locations
			u8 const* sourcePixel = targetRgba;
			for( int py = 0; py < 4; ++py )
			{
				for( int px = 0; px < 4; ++px )
				{
					// get the target location
					int sx = x + px;
					int sy = y + py;
					if( sx < width && sy < height )
					{
						u8* targetPixel = rgba + pitch*sy + 4*sx;
						
						// copy the rgba value
						CopyRGBA(sourcePixel, targetPixel, flags);
					}
					sourcePixel += 4;
				}
			}
			
			// advance
			sourceBlock += bytesPerBlock;
		}
	}
}

static double ErrorSq(double x, double y)
{
	return (x - y) * (x - y);
}

static void ComputeBlockWMSE(u8 const *original, u8 const *compressed, unsigned int w, unsigned int h, double &cmse, double &amse)
{
	// Computes the MSE for the block and weights it by the variance of the original block.
	// If the variance of the original block is less than 4 (i.e. a standard deviation of 1 per channel)
	// then the block is close to being a single colour. Quantisation errors in single colour blocks
	// are easier to see than similar errors in blocks that contain more colours, particularly when there
	// are many such blocks in a large area (eg a blue sky background) as they cause banding.  Given that
	// banding is easier to see than small errors in "complex" blocks, we weight the errors by a factor
	// of 5. This implies that images with large, single colour areas will have a higher potential WMSE
	// than images with lots of detail.

	cmse = amse = 0;
	unsigned int sum_p[4];  // per channel sum of pixels
	unsigned int sum_p2[4]; // per channel sum of pixels squared
	memset(sum_p, 0, sizeof(sum_p));
	memset(sum_p2, 0, sizeof(sum_p2));
	for( unsigned int py = 0; py < 4; ++py )
	{
		for( unsigned int px = 0; px < 4; ++px )
		{
			if( px < w && py < h )
			{
				double pixelCMSE = 0;
				for( int i = 0; i < 3; ++i )
				{
					pixelCMSE += ErrorSq(original[i], compressed[i]);
					sum_p[i] += original[i];
					sum_p2[i] += (unsigned int)original[i]*original[i];
				}
				if( original[3] == 0 && compressed[3] == 0 )
					pixelCMSE = 0; // transparent in both, so colour is inconsequential
				amse += ErrorSq(original[3], compressed[3]);
				cmse += pixelCMSE;
				sum_p[3] += original[3];
				sum_p2[3] += (unsigned int)original[3]*original[3];
			}
			original += 4;
			compressed += 4;
		}
	}
	unsigned int variance = 0;
	for( int i = 0; i < 4; ++i )
		variance += w*h*sum_p2[i] - sum_p[i]*sum_p[i];
	if( variance < 4 * w * w * h * h )
	{
		amse *= 5;
		cmse *= 5;
	}
}
  
void ComputeMSE( u8 const *rgba, int width, int height, u8 const *dxt, int flags, double &colourMSE, double &alphaMSE )
{
	ComputeMSE(rgba, width, height, width*4, dxt, flags, colourMSE, alphaMSE);
}
                
void ComputeMSE( u8 const *rgba, int width, int height, int pitch, u8 const *dxt, int flags, double &colourMSE, double &alphaMSE )
{
	// fix any bad flags
	flags = FixFlags( flags );
	colourMSE = alphaMSE = 0;

	// initialise the block input
	squish::u8 const* sourceBlock = dxt;
	int bytesPerBlock = ( ( flags & squish::kDxt1 ) != 0 ) ? 8 : 16;

	// loop over blocks
	for( int y = 0; y < height; y += 4 )
	{
		for( int x = 0; x < width; x += 4 )
		{
			// decompress the block
			u8 targetRgba[4*16];
			Decompress( targetRgba, sourceBlock, flags );
			u8 const* sourcePixel = targetRgba;

			// copy across to a similar pixel block
			u8 originalRgba[4*16];
			u8* originalPixel = originalRgba;

			for( int py = 0; py < 4; ++py )
			{
				for( int px = 0; px < 4; ++px )
				{
					int sx = x + px;
					int sy = y + py;
					if( sx < width && sy < height )
					{
						u8 const* targetPixel = rgba + pitch*sy + 4*sx;
						CopyRGBA(targetPixel, originalPixel, flags);
					}
					sourcePixel += 4;
					originalPixel += 4;
				}
			}

			// compute the weighted MSE of the block
			double blockCMSE, blockAMSE;
			ComputeBlockWMSE(originalRgba, targetRgba, std::min(4, width - x), std::min(4, height - y), blockCMSE, blockAMSE);
			colourMSE += blockCMSE;
			alphaMSE += blockAMSE;
			// advance
			sourceBlock += bytesPerBlock;
		}
	}
	colourMSE /= (width * height * 3);
	alphaMSE /= (width * height);
}

} // namespace squish