aboutsummaryrefslogtreecommitdiff
path: root/lib/UnrarXLib/suballoc.cpp
blob: 45cebcc4788b829c8597d0bc79d55f71d25aea7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/****************************************************************************
 *  This file is part of PPMd project                                       *
 *  Written and distributed to public domain by Dmitry Shkarin 1997,        *
 *  1999-2000                                                               *
 *  Contents: memory allocation routines                                    *
 ****************************************************************************/

SubAllocator::SubAllocator()
{
  Clean();
}


void SubAllocator::Clean()
{
  SubAllocatorSize=0;
}


inline void SubAllocator::InsertNode(void* p,int indx) 
{
  ((RAR_NODE*) p)->next=FreeList[indx].next;
  FreeList[indx].next=(RAR_NODE*) p;
}


inline void* SubAllocator::RemoveNode(int indx) 
{
  RAR_NODE* RetVal=FreeList[indx].next;
  FreeList[indx].next=RetVal->next;
  return RetVal;
}


inline uint SubAllocator::U2B(int NU) 
{ 
  return /*8*NU+4*NU*/UNIT_SIZE*NU;
}


inline void SubAllocator::SplitBlock(void* pv,int OldIndx,int NewIndx)
{
  int i, UDiff=Indx2Units[OldIndx]-Indx2Units[NewIndx];
  byte* p=((byte*) pv)+U2B(Indx2Units[NewIndx]);
  if (Indx2Units[i=Units2Indx[UDiff-1]] != UDiff) 
  {
    InsertNode(p,--i);
    p += U2B(i=Indx2Units[i]);
    UDiff -= i;
  }
  InsertNode(p,Units2Indx[UDiff-1]);
}




void SubAllocator::StopSubAllocator()
{
  if ( SubAllocatorSize ) 
  {
    SubAllocatorSize=0;
    rarfree(HeapStart);
  }
}


bool SubAllocator::StartSubAllocator(int SASize)
{
  uint t=(uint)(SASize) << 20;
  if ((uint)SubAllocatorSize == t)
    return TRUE;
  StopSubAllocator();
  uint AllocSize=t/FIXED_UNIT_SIZE*UNIT_SIZE+UNIT_SIZE;
#ifdef XBOX
  if ((HeapStart=(byte *)rarmalloc(AllocSize)) == NULL)
  {
    ErrHandler.MemoryError();
    return FALSE;
  }
#else
  // this is uggly, we keep halfing the size till
  // we manage to alloc, it's likely that we
  // fail to alloc 
  uint AllocSize2 = AllocSize;
  while(AllocSize2 && (HeapStart=(byte *)rarmalloc(AllocSize2)) == NULL)
    AllocSize2<<=1;
  
  if(HeapStart == NULL)
  {
    ErrHandler.MemoryError();
    return FALSE;
  }

#endif
  HeapEnd=HeapStart+AllocSize-UNIT_SIZE;
  SubAllocatorSize=t;
  return TRUE;
}


void SubAllocator::InitSubAllocator()
{
  int i, k;
  memset(FreeList,0,sizeof(FreeList));
  pText=HeapStart;
  uint Size2=FIXED_UNIT_SIZE*(SubAllocatorSize/8/FIXED_UNIT_SIZE*7);
  uint RealSize2=Size2/FIXED_UNIT_SIZE*UNIT_SIZE;
  uint Size1=SubAllocatorSize-Size2;
  uint RealSize1=Size1/FIXED_UNIT_SIZE*UNIT_SIZE+Size1%FIXED_UNIT_SIZE;
  HiUnit=HeapStart+SubAllocatorSize;
  LoUnit=UnitsStart=HeapStart+RealSize1;
  FakeUnitsStart=HeapStart+Size1;
  HiUnit=LoUnit+RealSize2;
  for (i=0,k=1;i < N1     ;i++,k += 1)
    Indx2Units[i]=k;
  for (k++;i < N1+N2      ;i++,k += 2)
    Indx2Units[i]=k;
  for (k++;i < N1+N2+N3   ;i++,k += 3)
    Indx2Units[i]=k;
  for (k++;i < N1+N2+N3+N4;i++,k += 4)
    Indx2Units[i]=k;
  for (GlueCount=k=i=0;k < 128;k++)
  {
    i += (Indx2Units[i] < k+1);
    Units2Indx[k]=i;
  }
}


inline void SubAllocator::GlueFreeBlocks()
{
  RAR_MEM_BLK s0, * p, * p1;
  int i, k, sz;
  if (LoUnit != HiUnit)
    *LoUnit=0;
  for (i=0, s0.next=s0.prev=&s0;i < N_INDEXES;i++)
    while ( FreeList[i].next )
    {
      p=(RAR_MEM_BLK*)RemoveNode(i);
      p->insertAt(&s0);
      p->Stamp=0xFFFF;
      p->NU=Indx2Units[i];
    }
  for (p=s0.next;p != &s0;p=p->next)
    while ((p1=p+p->NU)->Stamp == 0xFFFF && int(p->NU)+p1->NU < 0x10000)
    {
      p1->remove();
      p->NU += p1->NU;
    }
  while ((p=s0.next) != &s0)
  {
    for (p->remove(), sz=p->NU;sz > 128;sz -= 128, p += 128)
      InsertNode(p,N_INDEXES-1);
    if (Indx2Units[i=Units2Indx[sz-1]] != sz)
    {
      k=sz-Indx2Units[--i];
      InsertNode(p+(sz-k),k-1);
    }
    InsertNode(p,i);
  }
}

void* SubAllocator::AllocUnitsRare(int indx)
{
  if ( !GlueCount )
  {
    GlueCount = 255;
    GlueFreeBlocks();
    if ( FreeList[indx].next )
      return RemoveNode(indx);
  }
  int i=indx;
  do
  {
    if (++i == N_INDEXES)
    {
      GlueCount--;
      i=U2B(Indx2Units[indx]);
      int j=12*Indx2Units[indx];
      if (FakeUnitsStart-pText > j)
      {
        FakeUnitsStart-=j;
        UnitsStart -= i;
        return(UnitsStart);
      }
      return(NULL);
    }
  } while ( !FreeList[i].next );
  void* RetVal=RemoveNode(i);
  SplitBlock(RetVal,i,indx);
  return RetVal;
}


inline void* SubAllocator::AllocUnits(int NU)
{
  int indx=Units2Indx[NU-1];
  if ( FreeList[indx].next )
    return RemoveNode(indx);
  void* RetVal=LoUnit;
  LoUnit += U2B(Indx2Units[indx]);
  if (LoUnit <= HiUnit)
    return RetVal;
  LoUnit -= U2B(Indx2Units[indx]);
  return AllocUnitsRare(indx);
}


void* SubAllocator::AllocContext()
{
  if (HiUnit != LoUnit)
    return (HiUnit -= UNIT_SIZE);
  if ( FreeList->next )
    return RemoveNode(0);
  return AllocUnitsRare(0);
}


void* SubAllocator::ExpandUnits(void* OldPtr,int OldNU)
{
  int i0=Units2Indx[OldNU-1], i1=Units2Indx[OldNU-1+1];
  if (i0 == i1)
    return OldPtr;
  void* ptr=AllocUnits(OldNU+1);
  if ( ptr ) 
  {
    memcpy(ptr,OldPtr,U2B(OldNU));
    InsertNode(OldPtr,i0);
  }
  return ptr;
}


void* SubAllocator::ShrinkUnits(void* OldPtr,int OldNU,int NewNU)
{
  int i0=Units2Indx[OldNU-1], i1=Units2Indx[NewNU-1];
  if (i0 == i1)
    return OldPtr;
  if ( FreeList[i1].next )
  {
    void* ptr=RemoveNode(i1);
    memcpy(ptr,OldPtr,U2B(NewNU));
    InsertNode(OldPtr,i0);
    return ptr;
  } 
  else 
  {
    SplitBlock(OldPtr,i0,i1);
    return OldPtr;
  }
}


void SubAllocator::FreeUnits(void* ptr,int OldNU)
{
  InsertNode(ptr,Units2Indx[OldNU-1]);
}