diff options
Diffstat (limited to 'lib/liblame/libmp3lame/takehiro.c')
-rw-r--r-- | lib/liblame/libmp3lame/takehiro.c | 1356 |
1 files changed, 1356 insertions, 0 deletions
diff --git a/lib/liblame/libmp3lame/takehiro.c b/lib/liblame/libmp3lame/takehiro.c new file mode 100644 index 0000000000..aa248236ff --- /dev/null +++ b/lib/liblame/libmp3lame/takehiro.c @@ -0,0 +1,1356 @@ +/* + * MP3 huffman table selecting and bit counting + * + * Copyright (c) 1999-2005 Takehiro TOMINAGA + * Copyright (c) 2002-2005 Gabriel Bouvigne + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 02111-1307, USA. + */ + +/* $Id: takehiro.c,v 1.71.2.2 2008/09/22 20:21:39 robert Exp $ */ + +#ifdef HAVE_CONFIG_H +# include <config.h> +#endif + + +#include "lame.h" +#include "machine.h" +#include "encoder.h" +#include "util.h" +#include "quantize_pvt.h" +#include "tables.h" + + +static const struct { + const int region0_count; + const int region1_count; +} subdv_table[23] = { + { + 0, 0}, /* 0 bands */ + { + 0, 0}, /* 1 bands */ + { + 0, 0}, /* 2 bands */ + { + 0, 0}, /* 3 bands */ + { + 0, 0}, /* 4 bands */ + { + 0, 1}, /* 5 bands */ + { + 1, 1}, /* 6 bands */ + { + 1, 1}, /* 7 bands */ + { + 1, 2}, /* 8 bands */ + { + 2, 2}, /* 9 bands */ + { + 2, 3}, /* 10 bands */ + { + 2, 3}, /* 11 bands */ + { + 3, 4}, /* 12 bands */ + { + 3, 4}, /* 13 bands */ + { + 3, 4}, /* 14 bands */ + { + 4, 5}, /* 15 bands */ + { + 4, 5}, /* 16 bands */ + { + 4, 6}, /* 17 bands */ + { + 5, 6}, /* 18 bands */ + { + 5, 6}, /* 19 bands */ + { + 5, 7}, /* 20 bands */ + { + 6, 7}, /* 21 bands */ + { + 6, 7}, /* 22 bands */ +}; + + + + + +/********************************************************************* + * nonlinear quantization of xr + * More accurate formula than the ISO formula. Takes into account + * the fact that we are quantizing xr -> ix, but we want ix^4/3 to be + * as close as possible to x^4/3. (taking the nearest int would mean + * ix is as close as possible to xr, which is different.) + * + * From Segher Boessenkool <segher@eastsite.nl> 11/1999 + * + * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro + * Tominaga. If you need the ASM code, check CVS circa Aug 2000. + * + * 01/2004: Optimizations by Gabriel Bouvigne + *********************************************************************/ + + + + + +static void +quantize_lines_xrpow_01(int l, FLOAT istep, const FLOAT * xr, int *ix) +{ + const FLOAT compareval0 = (1.0 - 0.4054) / istep; + + assert(l > 0); + l = l >> 1; + while (l--) { + *(ix++) = (compareval0 > *xr++) ? 0 : 1; + *(ix++) = (compareval0 > *xr++) ? 0 : 1; + } +} + + + +#ifdef TAKEHIRO_IEEE754_HACK + +typedef union { + float f; + int i; +} fi_union; + +#define MAGIC_FLOAT (65536*(128)) +#define MAGIC_INT 0x4b000000 + + +static void +quantize_lines_xrpow(int l, FLOAT istep, const FLOAT * xp, int *pi) +{ + fi_union *fi; + int remaining; + + assert(l > 0); + + fi = (fi_union *) pi; + + l = l >> 1; + remaining = l % 2; + l = l >> 1; + while (l--) { + double x0 = istep * xp[0]; + double x1 = istep * xp[1]; + double x2 = istep * xp[2]; + double x3 = istep * xp[3]; + + x0 += MAGIC_FLOAT; + fi[0].f = x0; + x1 += MAGIC_FLOAT; + fi[1].f = x1; + x2 += MAGIC_FLOAT; + fi[2].f = x2; + x3 += MAGIC_FLOAT; + fi[3].f = x3; + + fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT]; + fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT]; + fi[2].f = x2 + adj43asm[fi[2].i - MAGIC_INT]; + fi[3].f = x3 + adj43asm[fi[3].i - MAGIC_INT]; + + fi[0].i -= MAGIC_INT; + fi[1].i -= MAGIC_INT; + fi[2].i -= MAGIC_INT; + fi[3].i -= MAGIC_INT; + fi += 4; + xp += 4; + }; + if (remaining) { + double x0 = istep * xp[0]; + double x1 = istep * xp[1]; + + x0 += MAGIC_FLOAT; + fi[0].f = x0; + x1 += MAGIC_FLOAT; + fi[1].f = x1; + + fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT]; + fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT]; + + fi[0].i -= MAGIC_INT; + fi[1].i -= MAGIC_INT; + } + +} + + +#else + +/********************************************************************* + * XRPOW_FTOI is a macro to convert floats to ints. + * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x] + * ROUNDFAC= -0.0946 + * + * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x] + * ROUNDFAC=0.4054 + * + * Note: using floor() or (int) is extremely slow. On machines where + * the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile + * to write some ASM for XRPOW_FTOI(). + *********************************************************************/ +#define XRPOW_FTOI(src,dest) ((dest) = (int)(src)) +#define QUANTFAC(rx) adj43[rx] +#define ROUNDFAC 0.4054 + + +static void +quantize_lines_xrpow(int l, FLOAT istep, const FLOAT * xr, int *ix) +{ + int remaining; + + assert(l > 0); + + l = l >> 1; + remaining = l % 2; + l = l >> 1; + while (l--) { + FLOAT x0, x1, x2, x3; + int rx0, rx1, rx2, rx3; + + x0 = *xr++ * istep; + x1 = *xr++ * istep; + XRPOW_FTOI(x0, rx0); + x2 = *xr++ * istep; + XRPOW_FTOI(x1, rx1); + x3 = *xr++ * istep; + XRPOW_FTOI(x2, rx2); + x0 += QUANTFAC(rx0); + XRPOW_FTOI(x3, rx3); + x1 += QUANTFAC(rx1); + XRPOW_FTOI(x0, *ix++); + x2 += QUANTFAC(rx2); + XRPOW_FTOI(x1, *ix++); + x3 += QUANTFAC(rx3); + XRPOW_FTOI(x2, *ix++); + XRPOW_FTOI(x3, *ix++); + }; + if (remaining) { + FLOAT x0, x1; + int rx0, rx1; + + x0 = *xr++ * istep; + x1 = *xr++ * istep; + XRPOW_FTOI(x0, rx0); + XRPOW_FTOI(x1, rx1); + x0 += QUANTFAC(rx0); + x1 += QUANTFAC(rx1); + XRPOW_FTOI(x0, *ix++); + XRPOW_FTOI(x1, *ix++); + } + +} + + + +#endif + + + +/********************************************************************* + * Quantization function + * This function will select which lines to quantize and call the + * proper quantization function + *********************************************************************/ + +static void +quantize_xrpow(const FLOAT * xp, int *pi, FLOAT istep, gr_info const *const cod_info, + calc_noise_data const *prev_noise) +{ + /* quantize on xr^(3/4) instead of xr */ + int sfb; + int sfbmax; + int j = 0; + int prev_data_use; + int *iData; + int accumulate = 0; + int accumulate01 = 0; + int *acc_iData; + const FLOAT *acc_xp; + + iData = pi; + acc_xp = xp; + acc_iData = iData; + + + /* Reusing previously computed data does not seems to work if global gain + is changed. Finding why it behaves this way would allow to use a cache of + previously computed values (let's 10 cached values per sfb) that would + probably provide a noticeable speedup */ + prev_data_use = (prev_noise && (cod_info->global_gain == prev_noise->global_gain)); + + if (cod_info->block_type == SHORT_TYPE) + sfbmax = 38; + else + sfbmax = 21; + + for (sfb = 0; sfb <= sfbmax; sfb++) { + int step = -1; + + if (prev_data_use || cod_info->block_type == NORM_TYPE) { + step = + cod_info->global_gain + - ((cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0)) + << (cod_info->scalefac_scale + 1)) + - cod_info->subblock_gain[cod_info->window[sfb]] * 8; + } + assert(cod_info->width[sfb] >= 0); + if (prev_data_use && (prev_noise->step[sfb] == step)) { + /* do not recompute this part, + but compute accumulated lines */ + if (accumulate) { + quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData); + accumulate = 0; + } + if (accumulate01) { + quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData); + accumulate01 = 0; + } + } + else { /*should compute this part */ + int l; + l = cod_info->width[sfb]; + + if ((j + cod_info->width[sfb]) > cod_info->max_nonzero_coeff) { + /*do not compute upper zero part */ + int usefullsize; + usefullsize = cod_info->max_nonzero_coeff - j + 1; + memset(&pi[cod_info->max_nonzero_coeff], 0, + sizeof(int) * (576 - cod_info->max_nonzero_coeff)); + l = usefullsize; + + if (l < 0) { + l = 0; + } + + /* no need to compute higher sfb values */ + sfb = sfbmax + 1; + } + + /*accumulate lines to quantize */ + if (!accumulate && !accumulate01) { + acc_iData = iData; + acc_xp = xp; + } + if (prev_noise && + prev_noise->sfb_count1 > 0 && + sfb >= prev_noise->sfb_count1 && + prev_noise->step[sfb] > 0 && step >= prev_noise->step[sfb]) { + + if (accumulate) { + quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData); + accumulate = 0; + acc_iData = iData; + acc_xp = xp; + } + accumulate01 += l; + } + else { + if (accumulate01) { + quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData); + accumulate01 = 0; + acc_iData = iData; + acc_xp = xp; + } + accumulate += l; + } + + if (l <= 0) { + /* rh: 20040215 + * may happen due to "prev_data_use" optimization + */ + if (accumulate01) { + quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData); + accumulate01 = 0; + } + if (accumulate) { + quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData); + accumulate = 0; + } + + break; /* ends for-loop */ + } + } + if (sfb <= sfbmax) { + iData += cod_info->width[sfb]; + xp += cod_info->width[sfb]; + j += cod_info->width[sfb]; + } + } + if (accumulate) { /*last data part */ + quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData); + accumulate = 0; + } + if (accumulate01) { /*last data part */ + quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData); + accumulate01 = 0; + } + +} + + + + +/*************************************************************************/ +/* ix_max */ +/*************************************************************************/ + +static int +ix_max(const int *ix, const int *end) +{ + int max1 = 0, max2 = 0; + + do { + int const x1 = *ix++; + int const x2 = *ix++; + if (max1 < x1) + max1 = x1; + + if (max2 < x2) + max2 = x2; + } while (ix < end); + if (max1 < max2) + max1 = max2; + return max1; +} + + + + + + + + +static int +count_bit_ESC(const int *ix, const int *const end, int t1, const int t2, int *const s) +{ + /* ESC-table is used */ + int const linbits = ht[t1].xlen * 65536 + ht[t2].xlen; + int sum = 0, sum2; + + do { + int x = *ix++; + int y = *ix++; + + if (x != 0) { + if (x > 14) { + x = 15; + sum += linbits; + } + x *= 16; + } + + if (y != 0) { + if (y > 14) { + y = 15; + sum += linbits; + } + x += y; + } + + sum += largetbl[x]; + } while (ix < end); + + sum2 = sum & 0xffff; + sum >>= 16; + + if (sum > sum2) { + sum = sum2; + t1 = t2; + } + + *s += sum; + return t1; +} + + +inline static int +count_bit_noESC(const int *ix, const int *const end, int *const s) +{ + /* No ESC-words */ + int sum1 = 0; + const char *const hlen1 = ht[1].hlen; + + do { + int const x = ix[0] * 2 + ix[1]; + ix += 2; + sum1 += hlen1[x]; + } while (ix < end); + + *s += sum1; + return 1; +} + + + +inline static int +count_bit_noESC_from2(const int *ix, const int *const end, int t1, int *const s) +{ + /* No ESC-words */ + unsigned int sum = 0, sum2; + const int xlen = ht[t1].xlen; + const unsigned int *hlen; + if (t1 == 2) + hlen = table23; + else + hlen = table56; + + do { + int const x = ix[0] * xlen + ix[1]; + ix += 2; + sum += hlen[x]; + } while (ix < end); + + sum2 = sum & 0xffff; + sum >>= 16; + + if (sum > sum2) { + sum = sum2; + t1++; + } + + *s += sum; + return t1; +} + + +inline static int +count_bit_noESC_from3(const int *ix, const int *const end, int t1, int *const s) +{ + /* No ESC-words */ + int sum1 = 0; + int sum2 = 0; + int sum3 = 0; + const int xlen = ht[t1].xlen; + const char *const hlen1 = ht[t1].hlen; + const char *const hlen2 = ht[t1 + 1].hlen; + const char *const hlen3 = ht[t1 + 2].hlen; + int t; + + do { + int const x = ix[0] * xlen + ix[1]; + ix += 2; + sum1 += hlen1[x]; + sum2 += hlen2[x]; + sum3 += hlen3[x]; + } while (ix < end); + + t = t1; + if (sum1 > sum2) { + sum1 = sum2; + t++; + } + if (sum1 > sum3) { + sum1 = sum3; + t = t1 + 2; + } + *s += sum1; + + return t; +} + + +/*************************************************************************/ +/* choose table */ +/*************************************************************************/ + +/* + Choose the Huffman table that will encode ix[begin..end] with + the fewest bits. + + Note: This code contains knowledge about the sizes and characteristics + of the Huffman tables as defined in the IS (Table B.7), and will not work + with any arbitrary tables. +*/ + +static int +choose_table_nonMMX(const int *ix, const int *const end, int *const s) +{ + int max; + int choice, choice2; + static const int huf_tbl_noESC[] = { + 1, 2, 5, 7, 7, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13 + }; + + max = ix_max(ix, end); + + switch (max) { + case 0: + return max; + + case 1: + return count_bit_noESC(ix, end, s); + + case 2: + case 3: + return count_bit_noESC_from2(ix, end, huf_tbl_noESC[max - 1], s); + + case 4: + case 5: + case 6: + case 7: + case 8: + case 9: + case 10: + case 11: + case 12: + case 13: + case 14: + case 15: + return count_bit_noESC_from3(ix, end, huf_tbl_noESC[max - 1], s); + + default: + /* try tables with linbits */ + if (max > IXMAX_VAL) { + *s = LARGE_BITS; + return -1; + } + max -= 15; + for (choice2 = 24; choice2 < 32; choice2++) { + if (ht[choice2].linmax >= max) { + break; + } + } + + for (choice = choice2 - 8; choice < 24; choice++) { + if (ht[choice].linmax >= max) { + break; + } + } + return count_bit_ESC(ix, end, choice, choice2, s); + } +} + + + +/*************************************************************************/ +/* count_bit */ +/*************************************************************************/ +int +noquant_count_bits(lame_internal_flags const *const gfc, + gr_info * const gi, calc_noise_data * prev_noise) +{ + int bits = 0; + int i, a1, a2; + int const *const ix = gi->l3_enc; + + i = Min(576, ((gi->max_nonzero_coeff + 2) >> 1) << 1); + + if (prev_noise) + prev_noise->sfb_count1 = 0; + + /* Determine count1 region */ + for (; i > 1; i -= 2) + if (ix[i - 1] | ix[i - 2]) + break; + gi->count1 = i; + + /* Determines the number of bits to encode the quadruples. */ + a1 = a2 = 0; + for (; i > 3; i -= 4) { + int p; + /* hack to check if all values <= 1 */ + if ((unsigned int) (ix[i - 1] | ix[i - 2] | ix[i - 3] | ix[i - 4]) > 1) + break; + + p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1]; + a1 += t32l[p]; + a2 += t33l[p]; + } + + bits = a1; + gi->count1table_select = 0; + if (a1 > a2) { + bits = a2; + gi->count1table_select = 1; + } + + gi->count1bits = bits; + gi->big_values = i; + if (i == 0) + return bits; + + if (gi->block_type == SHORT_TYPE) { + a1 = 3 * gfc->scalefac_band.s[3]; + if (a1 > gi->big_values) + a1 = gi->big_values; + a2 = gi->big_values; + + } + else if (gi->block_type == NORM_TYPE) { + assert(i <= 576); /* bv_scf has 576 entries (0..575) */ + a1 = gi->region0_count = gfc->bv_scf[i - 2]; + a2 = gi->region1_count = gfc->bv_scf[i - 1]; + + assert(a1 + a2 + 2 < SBPSY_l); + a2 = gfc->scalefac_band.l[a1 + a2 + 2]; + a1 = gfc->scalefac_band.l[a1 + 1]; + if (a2 < i) + gi->table_select[2] = gfc->choose_table(ix + a2, ix + i, &bits); + + } + else { + gi->region0_count = 7; + /*gi->region1_count = SBPSY_l - 7 - 1; */ + gi->region1_count = SBMAX_l - 1 - 7 - 1; + a1 = gfc->scalefac_band.l[7 + 1]; + a2 = i; + if (a1 > a2) { + a1 = a2; + } + } + + + /* have to allow for the case when bigvalues < region0 < region1 */ + /* (and region0, region1 are ignored) */ + a1 = Min(a1, i); + a2 = Min(a2, i); + + assert(a1 >= 0); + assert(a2 >= 0); + + /* Count the number of bits necessary to code the bigvalues region. */ + if (0 < a1) + gi->table_select[0] = gfc->choose_table(ix, ix + a1, &bits); + if (a1 < a2) + gi->table_select[1] = gfc->choose_table(ix + a1, ix + a2, &bits); + if (gfc->use_best_huffman == 2) { + gi->part2_3_length = bits; + best_huffman_divide(gfc, gi); + bits = gi->part2_3_length; + } + + + if (prev_noise) { + if (gi->block_type == NORM_TYPE) { + int sfb = 0; + while (gfc->scalefac_band.l[sfb] < gi->big_values) { + sfb++; + } + prev_noise->sfb_count1 = sfb; + } + } + + return bits; +} + +int +count_bits(lame_internal_flags const *const gfc, + const FLOAT * const xr, gr_info * const gi, calc_noise_data * prev_noise) +{ + int *const ix = gi->l3_enc; + + /* since quantize_xrpow uses table lookup, we need to check this first: */ + FLOAT const w = (IXMAX_VAL) / IPOW20(gi->global_gain); + + if (gi->xrpow_max > w) + return LARGE_BITS; + + quantize_xrpow(xr, ix, IPOW20(gi->global_gain), gi, prev_noise); + + if (gfc->substep_shaping & 2) { + int sfb, j = 0; + /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */ + int const gain = gi->global_gain + gi->scalefac_scale; + const FLOAT roundfac = 0.634521682242439 / IPOW20(gain); + for (sfb = 0; sfb < gi->sfbmax; sfb++) { + int const width = gi->width[sfb]; + assert(width >= 0); + if (!gfc->pseudohalf[sfb]) { + j += width; + } + else { + int k; + for (k = j, j += width; k < j; ++k) { + ix[k] = (xr[k] >= roundfac) ? ix[k] : 0; + } + } + } + } + return noquant_count_bits(gfc, gi, prev_noise); +} + +/*********************************************************************** + re-calculate the best scalefac_compress using scfsi + the saved bits are kept in the bit reservoir. + **********************************************************************/ + + +inline static void +recalc_divide_init(const lame_internal_flags * const gfc, + gr_info const *cod_info, + int const *const ix, int r01_bits[], int r01_div[], int r0_tbl[], int r1_tbl[]) +{ + int r0, r1, bigv, r0t, r1t, bits; + + bigv = cod_info->big_values; + + for (r0 = 0; r0 <= 7 + 15; r0++) { + r01_bits[r0] = LARGE_BITS; + } + + for (r0 = 0; r0 < 16; r0++) { + int const a1 = gfc->scalefac_band.l[r0 + 1]; + int r0bits; + if (a1 >= bigv) + break; + r0bits = 0; + r0t = gfc->choose_table(ix, ix + a1, &r0bits); + + for (r1 = 0; r1 < 8; r1++) { + int const a2 = gfc->scalefac_band.l[r0 + r1 + 2]; + if (a2 >= bigv) + break; + + bits = r0bits; + r1t = gfc->choose_table(ix + a1, ix + a2, &bits); + if (r01_bits[r0 + r1] > bits) { + r01_bits[r0 + r1] = bits; + r01_div[r0 + r1] = r0; + r0_tbl[r0 + r1] = r0t; + r1_tbl[r0 + r1] = r1t; + } + } + } +} + +inline static void +recalc_divide_sub(const lame_internal_flags * const gfc, + const gr_info * cod_info2, + gr_info * const gi, + const int *const ix, + const int r01_bits[], const int r01_div[], const int r0_tbl[], const int r1_tbl[]) +{ + int bits, r2, a2, bigv, r2t; + + bigv = cod_info2->big_values; + + for (r2 = 2; r2 < SBMAX_l + 1; r2++) { + a2 = gfc->scalefac_band.l[r2]; + if (a2 >= bigv) + break; + + bits = r01_bits[r2 - 2] + cod_info2->count1bits; + if (gi->part2_3_length <= bits) + break; + + r2t = gfc->choose_table(ix + a2, ix + bigv, &bits); + if (gi->part2_3_length <= bits) + continue; + + memcpy(gi, cod_info2, sizeof(gr_info)); + gi->part2_3_length = bits; + gi->region0_count = r01_div[r2 - 2]; + gi->region1_count = r2 - 2 - r01_div[r2 - 2]; + gi->table_select[0] = r0_tbl[r2 - 2]; + gi->table_select[1] = r1_tbl[r2 - 2]; + gi->table_select[2] = r2t; + } +} + + + + +void +best_huffman_divide(const lame_internal_flags * const gfc, gr_info * const gi) +{ + int i, a1, a2; + gr_info cod_info2; + int const *const ix = gi->l3_enc; + + int r01_bits[7 + 15 + 1]; + int r01_div[7 + 15 + 1]; + int r0_tbl[7 + 15 + 1]; + int r1_tbl[7 + 15 + 1]; + + + /* SHORT BLOCK stuff fails for MPEG2 */ + if (gi->block_type == SHORT_TYPE && gfc->mode_gr == 1) + return; + + + memcpy(&cod_info2, gi, sizeof(gr_info)); + if (gi->block_type == NORM_TYPE) { + recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); + recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); + } + + i = cod_info2.big_values; + if (i == 0 || (unsigned int) (ix[i - 2] | ix[i - 1]) > 1) + return; + + i = gi->count1 + 2; + if (i > 576) + return; + + /* Determines the number of bits to encode the quadruples. */ + memcpy(&cod_info2, gi, sizeof(gr_info)); + cod_info2.count1 = i; + a1 = a2 = 0; + + assert(i <= 576); + + for (; i > cod_info2.big_values; i -= 4) { + int const p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1]; + a1 += t32l[p]; + a2 += t33l[p]; + } + cod_info2.big_values = i; + + cod_info2.count1table_select = 0; + if (a1 > a2) { + a1 = a2; + cod_info2.count1table_select = 1; + } + + cod_info2.count1bits = a1; + + if (cod_info2.block_type == NORM_TYPE) + recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); + else { + /* Count the number of bits necessary to code the bigvalues region. */ + cod_info2.part2_3_length = a1; + a1 = gfc->scalefac_band.l[7 + 1]; + if (a1 > i) { + a1 = i; + } + if (a1 > 0) + cod_info2.table_select[0] = + gfc->choose_table(ix, ix + a1, (int *) &cod_info2.part2_3_length); + if (i > a1) + cod_info2.table_select[1] = + gfc->choose_table(ix + a1, ix + i, (int *) &cod_info2.part2_3_length); + if (gi->part2_3_length > cod_info2.part2_3_length) + memcpy(gi, &cod_info2, sizeof(gr_info)); + } +} + +static const int slen1_n[16] = { 1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16 }; +static const int slen2_n[16] = { 1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8 }; +const int slen1_tab[16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 }; +const int slen2_tab[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 }; + +static void +scfsi_calc(int ch, III_side_info_t * l3_side) +{ + unsigned int i; + int s1, s2, c1, c2; + int sfb; + gr_info *const gi = &l3_side->tt[1][ch]; + gr_info const *const g0 = &l3_side->tt[0][ch]; + + for (i = 0; i < (sizeof(scfsi_band) / sizeof(int)) - 1; i++) { + for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) { + if (g0->scalefac[sfb] != gi->scalefac[sfb] + && gi->scalefac[sfb] >= 0) + break; + } + if (sfb == scfsi_band[i + 1]) { + for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) { + gi->scalefac[sfb] = -1; + } + l3_side->scfsi[ch][i] = 1; + } + } + + s1 = c1 = 0; + for (sfb = 0; sfb < 11; sfb++) { + if (gi->scalefac[sfb] == -1) + continue; + c1++; + if (s1 < gi->scalefac[sfb]) + s1 = gi->scalefac[sfb]; + } + + s2 = c2 = 0; + for (; sfb < SBPSY_l; sfb++) { + if (gi->scalefac[sfb] == -1) + continue; + c2++; + if (s2 < gi->scalefac[sfb]) + s2 = gi->scalefac[sfb]; + } + + for (i = 0; i < 16; i++) { + if (s1 < slen1_n[i] && s2 < slen2_n[i]) { + int const c = slen1_tab[i] * c1 + slen2_tab[i] * c2; + if (gi->part2_length > c) { + gi->part2_length = c; + gi->scalefac_compress = i; + } + } + } +} + +/* +Find the optimal way to store the scalefactors. +Only call this routine after final scalefactors have been +chosen and the channel/granule will not be re-encoded. + */ +void +best_scalefac_store(const lame_internal_flags * gfc, + const int gr, const int ch, III_side_info_t * const l3_side) +{ + /* use scalefac_scale if we can */ + gr_info *const gi = &l3_side->tt[gr][ch]; + int sfb, i, j, l; + int recalc = 0; + + /* remove scalefacs from bands with ix=0. This idea comes + * from the AAC ISO docs. added mt 3/00 */ + /* check if l3_enc=0 */ + j = 0; + for (sfb = 0; sfb < gi->sfbmax; sfb++) { + int const width = gi->width[sfb]; + assert(width >= 0); + j += width; + for (l = -width; l < 0; l++) { + if (gi->l3_enc[l + j] != 0) + break; + } + if (l == 0) + gi->scalefac[sfb] = recalc = -2; /* anything goes. */ + /* only best_scalefac_store and calc_scfsi + * know--and only they should know--about the magic number -2. + */ + } + + if (!gi->scalefac_scale && !gi->preflag) { + int s = 0; + for (sfb = 0; sfb < gi->sfbmax; sfb++) + if (gi->scalefac[sfb] > 0) + s |= gi->scalefac[sfb]; + + if (!(s & 1) && s != 0) { + for (sfb = 0; sfb < gi->sfbmax; sfb++) + if (gi->scalefac[sfb] > 0) + gi->scalefac[sfb] >>= 1; + + gi->scalefac_scale = recalc = 1; + } + } + + if (!gi->preflag && gi->block_type != SHORT_TYPE && gfc->mode_gr == 2) { + for (sfb = 11; sfb < SBPSY_l; sfb++) + if (gi->scalefac[sfb] < pretab[sfb] && gi->scalefac[sfb] != -2) + break; + if (sfb == SBPSY_l) { + for (sfb = 11; sfb < SBPSY_l; sfb++) + if (gi->scalefac[sfb] > 0) + gi->scalefac[sfb] -= pretab[sfb]; + + gi->preflag = recalc = 1; + } + } + + for (i = 0; i < 4; i++) + l3_side->scfsi[ch][i] = 0; + + if (gfc->mode_gr == 2 && gr == 1 + && l3_side->tt[0][ch].block_type != SHORT_TYPE + && l3_side->tt[1][ch].block_type != SHORT_TYPE) { + scfsi_calc(ch, l3_side); + recalc = 0; + } + for (sfb = 0; sfb < gi->sfbmax; sfb++) { + if (gi->scalefac[sfb] == -2) { + gi->scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */ + } + } + if (recalc) { + if (gfc->mode_gr == 2) { + (void) scale_bitcount(gi); + } + else { + (void) scale_bitcount_lsf(gfc, gi); + } + } +} + + +#ifndef NDEBUG +static int +all_scalefactors_not_negative(int const *scalefac, int n) +{ + int i; + for (i = 0; i < n; ++i) { + if (scalefac[i] < 0) + return 0; + } + return 1; +} +#endif + + +/* number of bits used to encode scalefacs */ + +/* 18*slen1_tab[i] + 18*slen2_tab[i] */ +static const int scale_short[16] = { + 0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126 +}; + +/* 17*slen1_tab[i] + 18*slen2_tab[i] */ +static const int scale_mixed[16] = { + 0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122 +}; + +/* 11*slen1_tab[i] + 10*slen2_tab[i] */ +static const int scale_long[16] = { + 0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74 +}; + + +/*************************************************************************/ +/* scale_bitcount */ +/*************************************************************************/ + +/* Also calculates the number of bits necessary to code the scalefactors. */ + +int +scale_bitcount(gr_info * const cod_info) +{ + int k, sfb, max_slen1 = 0, max_slen2 = 0; + + /* maximum values */ + const int *tab; + int *const scalefac = cod_info->scalefac; + + assert(all_scalefactors_not_negative(scalefac, cod_info->sfbmax)); + + if (cod_info->block_type == SHORT_TYPE) { + tab = scale_short; + if (cod_info->mixed_block_flag) + tab = scale_mixed; + } + else { /* block_type == 1,2,or 3 */ + tab = scale_long; + if (!cod_info->preflag) { + for (sfb = 11; sfb < SBPSY_l; sfb++) + if (scalefac[sfb] < pretab[sfb]) + break; + + if (sfb == SBPSY_l) { + cod_info->preflag = 1; + for (sfb = 11; sfb < SBPSY_l; sfb++) + scalefac[sfb] -= pretab[sfb]; + } + } + } + + for (sfb = 0; sfb < cod_info->sfbdivide; sfb++) + if (max_slen1 < scalefac[sfb]) + max_slen1 = scalefac[sfb]; + + for (; sfb < cod_info->sfbmax; sfb++) + if (max_slen2 < scalefac[sfb]) + max_slen2 = scalefac[sfb]; + + /* from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99 + * loop over *all* posible values of scalefac_compress to find the + * one which uses the smallest number of bits. ISO would stop + * at first valid index */ + cod_info->part2_length = LARGE_BITS; + for (k = 0; k < 16; k++) { + if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k] + && cod_info->part2_length > tab[k]) { + cod_info->part2_length = tab[k]; + cod_info->scalefac_compress = k; + } + } + return cod_info->part2_length == LARGE_BITS; +} + + + +/* + table of largest scalefactor values for MPEG2 +*/ +static const int max_range_sfac_tab[6][4] = { + {15, 15, 7, 7}, + {15, 15, 7, 0}, + {7, 3, 0, 0}, + {15, 31, 31, 0}, + {7, 7, 7, 0}, + {3, 3, 0, 0} +}; + + + + +/*************************************************************************/ +/* scale_bitcount_lsf */ +/*************************************************************************/ + +/* Also counts the number of bits to encode the scalefacs but for MPEG 2 */ +/* Lower sampling frequencies (24, 22.05 and 16 kHz.) */ + +/* This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS, */ +/* "Audio Decoding Layer III" */ + +int +scale_bitcount_lsf(const lame_internal_flags * gfc, gr_info * const cod_info) +{ + int table_number, row_in_table, partition, nr_sfb, window, over; + int i, sfb, max_sfac[4]; + const int *partition_table; + int const *const scalefac = cod_info->scalefac; + + /* + Set partition table. Note that should try to use table one, + but do not yet... + */ + if (cod_info->preflag) + table_number = 2; + else + table_number = 0; + + for (i = 0; i < 4; i++) + max_sfac[i] = 0; + + if (cod_info->block_type == SHORT_TYPE) { + row_in_table = 1; + partition_table = &nr_of_sfb_block[table_number][row_in_table][0]; + for (sfb = 0, partition = 0; partition < 4; partition++) { + nr_sfb = partition_table[partition] / 3; + for (i = 0; i < nr_sfb; i++, sfb++) + for (window = 0; window < 3; window++) + if (scalefac[sfb * 3 + window] > max_sfac[partition]) + max_sfac[partition] = scalefac[sfb * 3 + window]; + } + } + else { + row_in_table = 0; + partition_table = &nr_of_sfb_block[table_number][row_in_table][0]; + for (sfb = 0, partition = 0; partition < 4; partition++) { + nr_sfb = partition_table[partition]; + for (i = 0; i < nr_sfb; i++, sfb++) + if (scalefac[sfb] > max_sfac[partition]) + max_sfac[partition] = scalefac[sfb]; + } + } + + for (over = 0, partition = 0; partition < 4; partition++) { + if (max_sfac[partition] > max_range_sfac_tab[table_number][partition]) + over++; + } + if (!over) { + /* + Since no bands have been over-amplified, we can set scalefac_compress + and slen[] for the formatter + */ + static const int log2tab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 }; + + int slen1, slen2, slen3, slen4; + + cod_info->sfb_partition_table = nr_of_sfb_block[table_number][row_in_table]; + for (partition = 0; partition < 4; partition++) + cod_info->slen[partition] = log2tab[max_sfac[partition]]; + + /* set scalefac_compress */ + slen1 = cod_info->slen[0]; + slen2 = cod_info->slen[1]; + slen3 = cod_info->slen[2]; + slen4 = cod_info->slen[3]; + + switch (table_number) { + case 0: + cod_info->scalefac_compress = (((slen1 * 5) + slen2) << 4) + + (slen3 << 2) + + slen4; + break; + + case 1: + cod_info->scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2) + + slen3; + break; + + case 2: + cod_info->scalefac_compress = 500 + (slen1 * 3) + slen2; + break; + + default: + ERRORF(gfc, "intensity stereo not implemented yet\n"); + break; + } + } +#ifdef DEBUG + if (over) + ERRORF(gfc, "---WARNING !! Amplification of some bands over limits\n"); +#endif + if (!over) { + assert(cod_info->sfb_partition_table); + cod_info->part2_length = 0; + for (partition = 0; partition < 4; partition++) + cod_info->part2_length += + cod_info->slen[partition] * cod_info->sfb_partition_table[partition]; + } + return over; +} + + +#ifdef MMX_choose_table +extern int choose_table_MMX(const int *ix, const int *const end, int *const s); +#endif + +void +huffman_init(lame_internal_flags * const gfc) +{ + int i; + + gfc->choose_table = choose_table_nonMMX; + +#ifdef MMX_choose_table + if (gfc->CPU_features.MMX) { + gfc->choose_table = choose_table_MMX; + } +#endif + + for (i = 2; i <= 576; i += 2) { + int scfb_anz = 0, bv_index; + while (gfc->scalefac_band.l[++scfb_anz] < i); + + bv_index = subdv_table[scfb_anz].region0_count; + while (gfc->scalefac_band.l[bv_index + 1] > i) + bv_index--; + + if (bv_index < 0) { + /* this is an indication that everything is going to + be encoded as region0: bigvalues < region0 < region1 + so lets set region0, region1 to some value larger + than bigvalues */ + bv_index = subdv_table[scfb_anz].region0_count; + } + + gfc->bv_scf[i - 2] = bv_index; + + bv_index = subdv_table[scfb_anz].region1_count; + while (gfc->scalefac_band.l[bv_index + gfc->bv_scf[i - 2] + 2] > i) + bv_index--; + + if (bv_index < 0) { + bv_index = subdv_table[scfb_anz].region1_count; + } + + gfc->bv_scf[i - 1] = bv_index; + } +} |