aboutsummaryrefslogtreecommitdiff
path: root/lib/liblame/libmp3lame/takehiro.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/liblame/libmp3lame/takehiro.c')
-rw-r--r--lib/liblame/libmp3lame/takehiro.c1356
1 files changed, 1356 insertions, 0 deletions
diff --git a/lib/liblame/libmp3lame/takehiro.c b/lib/liblame/libmp3lame/takehiro.c
new file mode 100644
index 0000000000..aa248236ff
--- /dev/null
+++ b/lib/liblame/libmp3lame/takehiro.c
@@ -0,0 +1,1356 @@
+/*
+ * MP3 huffman table selecting and bit counting
+ *
+ * Copyright (c) 1999-2005 Takehiro TOMINAGA
+ * Copyright (c) 2002-2005 Gabriel Bouvigne
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Library General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 02111-1307, USA.
+ */
+
+/* $Id: takehiro.c,v 1.71.2.2 2008/09/22 20:21:39 robert Exp $ */
+
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+
+#include "lame.h"
+#include "machine.h"
+#include "encoder.h"
+#include "util.h"
+#include "quantize_pvt.h"
+#include "tables.h"
+
+
+static const struct {
+ const int region0_count;
+ const int region1_count;
+} subdv_table[23] = {
+ {
+ 0, 0}, /* 0 bands */
+ {
+ 0, 0}, /* 1 bands */
+ {
+ 0, 0}, /* 2 bands */
+ {
+ 0, 0}, /* 3 bands */
+ {
+ 0, 0}, /* 4 bands */
+ {
+ 0, 1}, /* 5 bands */
+ {
+ 1, 1}, /* 6 bands */
+ {
+ 1, 1}, /* 7 bands */
+ {
+ 1, 2}, /* 8 bands */
+ {
+ 2, 2}, /* 9 bands */
+ {
+ 2, 3}, /* 10 bands */
+ {
+ 2, 3}, /* 11 bands */
+ {
+ 3, 4}, /* 12 bands */
+ {
+ 3, 4}, /* 13 bands */
+ {
+ 3, 4}, /* 14 bands */
+ {
+ 4, 5}, /* 15 bands */
+ {
+ 4, 5}, /* 16 bands */
+ {
+ 4, 6}, /* 17 bands */
+ {
+ 5, 6}, /* 18 bands */
+ {
+ 5, 6}, /* 19 bands */
+ {
+ 5, 7}, /* 20 bands */
+ {
+ 6, 7}, /* 21 bands */
+ {
+ 6, 7}, /* 22 bands */
+};
+
+
+
+
+
+/*********************************************************************
+ * nonlinear quantization of xr
+ * More accurate formula than the ISO formula. Takes into account
+ * the fact that we are quantizing xr -> ix, but we want ix^4/3 to be
+ * as close as possible to x^4/3. (taking the nearest int would mean
+ * ix is as close as possible to xr, which is different.)
+ *
+ * From Segher Boessenkool <segher@eastsite.nl> 11/1999
+ *
+ * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro
+ * Tominaga. If you need the ASM code, check CVS circa Aug 2000.
+ *
+ * 01/2004: Optimizations by Gabriel Bouvigne
+ *********************************************************************/
+
+
+
+
+
+static void
+quantize_lines_xrpow_01(int l, FLOAT istep, const FLOAT * xr, int *ix)
+{
+ const FLOAT compareval0 = (1.0 - 0.4054) / istep;
+
+ assert(l > 0);
+ l = l >> 1;
+ while (l--) {
+ *(ix++) = (compareval0 > *xr++) ? 0 : 1;
+ *(ix++) = (compareval0 > *xr++) ? 0 : 1;
+ }
+}
+
+
+
+#ifdef TAKEHIRO_IEEE754_HACK
+
+typedef union {
+ float f;
+ int i;
+} fi_union;
+
+#define MAGIC_FLOAT (65536*(128))
+#define MAGIC_INT 0x4b000000
+
+
+static void
+quantize_lines_xrpow(int l, FLOAT istep, const FLOAT * xp, int *pi)
+{
+ fi_union *fi;
+ int remaining;
+
+ assert(l > 0);
+
+ fi = (fi_union *) pi;
+
+ l = l >> 1;
+ remaining = l % 2;
+ l = l >> 1;
+ while (l--) {
+ double x0 = istep * xp[0];
+ double x1 = istep * xp[1];
+ double x2 = istep * xp[2];
+ double x3 = istep * xp[3];
+
+ x0 += MAGIC_FLOAT;
+ fi[0].f = x0;
+ x1 += MAGIC_FLOAT;
+ fi[1].f = x1;
+ x2 += MAGIC_FLOAT;
+ fi[2].f = x2;
+ x3 += MAGIC_FLOAT;
+ fi[3].f = x3;
+
+ fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
+ fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
+ fi[2].f = x2 + adj43asm[fi[2].i - MAGIC_INT];
+ fi[3].f = x3 + adj43asm[fi[3].i - MAGIC_INT];
+
+ fi[0].i -= MAGIC_INT;
+ fi[1].i -= MAGIC_INT;
+ fi[2].i -= MAGIC_INT;
+ fi[3].i -= MAGIC_INT;
+ fi += 4;
+ xp += 4;
+ };
+ if (remaining) {
+ double x0 = istep * xp[0];
+ double x1 = istep * xp[1];
+
+ x0 += MAGIC_FLOAT;
+ fi[0].f = x0;
+ x1 += MAGIC_FLOAT;
+ fi[1].f = x1;
+
+ fi[0].f = x0 + adj43asm[fi[0].i - MAGIC_INT];
+ fi[1].f = x1 + adj43asm[fi[1].i - MAGIC_INT];
+
+ fi[0].i -= MAGIC_INT;
+ fi[1].i -= MAGIC_INT;
+ }
+
+}
+
+
+#else
+
+/*********************************************************************
+ * XRPOW_FTOI is a macro to convert floats to ints.
+ * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]
+ * ROUNDFAC= -0.0946
+ *
+ * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]
+ * ROUNDFAC=0.4054
+ *
+ * Note: using floor() or (int) is extremely slow. On machines where
+ * the TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile
+ * to write some ASM for XRPOW_FTOI().
+ *********************************************************************/
+#define XRPOW_FTOI(src,dest) ((dest) = (int)(src))
+#define QUANTFAC(rx) adj43[rx]
+#define ROUNDFAC 0.4054
+
+
+static void
+quantize_lines_xrpow(int l, FLOAT istep, const FLOAT * xr, int *ix)
+{
+ int remaining;
+
+ assert(l > 0);
+
+ l = l >> 1;
+ remaining = l % 2;
+ l = l >> 1;
+ while (l--) {
+ FLOAT x0, x1, x2, x3;
+ int rx0, rx1, rx2, rx3;
+
+ x0 = *xr++ * istep;
+ x1 = *xr++ * istep;
+ XRPOW_FTOI(x0, rx0);
+ x2 = *xr++ * istep;
+ XRPOW_FTOI(x1, rx1);
+ x3 = *xr++ * istep;
+ XRPOW_FTOI(x2, rx2);
+ x0 += QUANTFAC(rx0);
+ XRPOW_FTOI(x3, rx3);
+ x1 += QUANTFAC(rx1);
+ XRPOW_FTOI(x0, *ix++);
+ x2 += QUANTFAC(rx2);
+ XRPOW_FTOI(x1, *ix++);
+ x3 += QUANTFAC(rx3);
+ XRPOW_FTOI(x2, *ix++);
+ XRPOW_FTOI(x3, *ix++);
+ };
+ if (remaining) {
+ FLOAT x0, x1;
+ int rx0, rx1;
+
+ x0 = *xr++ * istep;
+ x1 = *xr++ * istep;
+ XRPOW_FTOI(x0, rx0);
+ XRPOW_FTOI(x1, rx1);
+ x0 += QUANTFAC(rx0);
+ x1 += QUANTFAC(rx1);
+ XRPOW_FTOI(x0, *ix++);
+ XRPOW_FTOI(x1, *ix++);
+ }
+
+}
+
+
+
+#endif
+
+
+
+/*********************************************************************
+ * Quantization function
+ * This function will select which lines to quantize and call the
+ * proper quantization function
+ *********************************************************************/
+
+static void
+quantize_xrpow(const FLOAT * xp, int *pi, FLOAT istep, gr_info const *const cod_info,
+ calc_noise_data const *prev_noise)
+{
+ /* quantize on xr^(3/4) instead of xr */
+ int sfb;
+ int sfbmax;
+ int j = 0;
+ int prev_data_use;
+ int *iData;
+ int accumulate = 0;
+ int accumulate01 = 0;
+ int *acc_iData;
+ const FLOAT *acc_xp;
+
+ iData = pi;
+ acc_xp = xp;
+ acc_iData = iData;
+
+
+ /* Reusing previously computed data does not seems to work if global gain
+ is changed. Finding why it behaves this way would allow to use a cache of
+ previously computed values (let's 10 cached values per sfb) that would
+ probably provide a noticeable speedup */
+ prev_data_use = (prev_noise && (cod_info->global_gain == prev_noise->global_gain));
+
+ if (cod_info->block_type == SHORT_TYPE)
+ sfbmax = 38;
+ else
+ sfbmax = 21;
+
+ for (sfb = 0; sfb <= sfbmax; sfb++) {
+ int step = -1;
+
+ if (prev_data_use || cod_info->block_type == NORM_TYPE) {
+ step =
+ cod_info->global_gain
+ - ((cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0))
+ << (cod_info->scalefac_scale + 1))
+ - cod_info->subblock_gain[cod_info->window[sfb]] * 8;
+ }
+ assert(cod_info->width[sfb] >= 0);
+ if (prev_data_use && (prev_noise->step[sfb] == step)) {
+ /* do not recompute this part,
+ but compute accumulated lines */
+ if (accumulate) {
+ quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
+ accumulate = 0;
+ }
+ if (accumulate01) {
+ quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
+ accumulate01 = 0;
+ }
+ }
+ else { /*should compute this part */
+ int l;
+ l = cod_info->width[sfb];
+
+ if ((j + cod_info->width[sfb]) > cod_info->max_nonzero_coeff) {
+ /*do not compute upper zero part */
+ int usefullsize;
+ usefullsize = cod_info->max_nonzero_coeff - j + 1;
+ memset(&pi[cod_info->max_nonzero_coeff], 0,
+ sizeof(int) * (576 - cod_info->max_nonzero_coeff));
+ l = usefullsize;
+
+ if (l < 0) {
+ l = 0;
+ }
+
+ /* no need to compute higher sfb values */
+ sfb = sfbmax + 1;
+ }
+
+ /*accumulate lines to quantize */
+ if (!accumulate && !accumulate01) {
+ acc_iData = iData;
+ acc_xp = xp;
+ }
+ if (prev_noise &&
+ prev_noise->sfb_count1 > 0 &&
+ sfb >= prev_noise->sfb_count1 &&
+ prev_noise->step[sfb] > 0 && step >= prev_noise->step[sfb]) {
+
+ if (accumulate) {
+ quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
+ accumulate = 0;
+ acc_iData = iData;
+ acc_xp = xp;
+ }
+ accumulate01 += l;
+ }
+ else {
+ if (accumulate01) {
+ quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
+ accumulate01 = 0;
+ acc_iData = iData;
+ acc_xp = xp;
+ }
+ accumulate += l;
+ }
+
+ if (l <= 0) {
+ /* rh: 20040215
+ * may happen due to "prev_data_use" optimization
+ */
+ if (accumulate01) {
+ quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
+ accumulate01 = 0;
+ }
+ if (accumulate) {
+ quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
+ accumulate = 0;
+ }
+
+ break; /* ends for-loop */
+ }
+ }
+ if (sfb <= sfbmax) {
+ iData += cod_info->width[sfb];
+ xp += cod_info->width[sfb];
+ j += cod_info->width[sfb];
+ }
+ }
+ if (accumulate) { /*last data part */
+ quantize_lines_xrpow(accumulate, istep, acc_xp, acc_iData);
+ accumulate = 0;
+ }
+ if (accumulate01) { /*last data part */
+ quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_iData);
+ accumulate01 = 0;
+ }
+
+}
+
+
+
+
+/*************************************************************************/
+/* ix_max */
+/*************************************************************************/
+
+static int
+ix_max(const int *ix, const int *end)
+{
+ int max1 = 0, max2 = 0;
+
+ do {
+ int const x1 = *ix++;
+ int const x2 = *ix++;
+ if (max1 < x1)
+ max1 = x1;
+
+ if (max2 < x2)
+ max2 = x2;
+ } while (ix < end);
+ if (max1 < max2)
+ max1 = max2;
+ return max1;
+}
+
+
+
+
+
+
+
+
+static int
+count_bit_ESC(const int *ix, const int *const end, int t1, const int t2, int *const s)
+{
+ /* ESC-table is used */
+ int const linbits = ht[t1].xlen * 65536 + ht[t2].xlen;
+ int sum = 0, sum2;
+
+ do {
+ int x = *ix++;
+ int y = *ix++;
+
+ if (x != 0) {
+ if (x > 14) {
+ x = 15;
+ sum += linbits;
+ }
+ x *= 16;
+ }
+
+ if (y != 0) {
+ if (y > 14) {
+ y = 15;
+ sum += linbits;
+ }
+ x += y;
+ }
+
+ sum += largetbl[x];
+ } while (ix < end);
+
+ sum2 = sum & 0xffff;
+ sum >>= 16;
+
+ if (sum > sum2) {
+ sum = sum2;
+ t1 = t2;
+ }
+
+ *s += sum;
+ return t1;
+}
+
+
+inline static int
+count_bit_noESC(const int *ix, const int *const end, int *const s)
+{
+ /* No ESC-words */
+ int sum1 = 0;
+ const char *const hlen1 = ht[1].hlen;
+
+ do {
+ int const x = ix[0] * 2 + ix[1];
+ ix += 2;
+ sum1 += hlen1[x];
+ } while (ix < end);
+
+ *s += sum1;
+ return 1;
+}
+
+
+
+inline static int
+count_bit_noESC_from2(const int *ix, const int *const end, int t1, int *const s)
+{
+ /* No ESC-words */
+ unsigned int sum = 0, sum2;
+ const int xlen = ht[t1].xlen;
+ const unsigned int *hlen;
+ if (t1 == 2)
+ hlen = table23;
+ else
+ hlen = table56;
+
+ do {
+ int const x = ix[0] * xlen + ix[1];
+ ix += 2;
+ sum += hlen[x];
+ } while (ix < end);
+
+ sum2 = sum & 0xffff;
+ sum >>= 16;
+
+ if (sum > sum2) {
+ sum = sum2;
+ t1++;
+ }
+
+ *s += sum;
+ return t1;
+}
+
+
+inline static int
+count_bit_noESC_from3(const int *ix, const int *const end, int t1, int *const s)
+{
+ /* No ESC-words */
+ int sum1 = 0;
+ int sum2 = 0;
+ int sum3 = 0;
+ const int xlen = ht[t1].xlen;
+ const char *const hlen1 = ht[t1].hlen;
+ const char *const hlen2 = ht[t1 + 1].hlen;
+ const char *const hlen3 = ht[t1 + 2].hlen;
+ int t;
+
+ do {
+ int const x = ix[0] * xlen + ix[1];
+ ix += 2;
+ sum1 += hlen1[x];
+ sum2 += hlen2[x];
+ sum3 += hlen3[x];
+ } while (ix < end);
+
+ t = t1;
+ if (sum1 > sum2) {
+ sum1 = sum2;
+ t++;
+ }
+ if (sum1 > sum3) {
+ sum1 = sum3;
+ t = t1 + 2;
+ }
+ *s += sum1;
+
+ return t;
+}
+
+
+/*************************************************************************/
+/* choose table */
+/*************************************************************************/
+
+/*
+ Choose the Huffman table that will encode ix[begin..end] with
+ the fewest bits.
+
+ Note: This code contains knowledge about the sizes and characteristics
+ of the Huffman tables as defined in the IS (Table B.7), and will not work
+ with any arbitrary tables.
+*/
+
+static int
+choose_table_nonMMX(const int *ix, const int *const end, int *const s)
+{
+ int max;
+ int choice, choice2;
+ static const int huf_tbl_noESC[] = {
+ 1, 2, 5, 7, 7, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13
+ };
+
+ max = ix_max(ix, end);
+
+ switch (max) {
+ case 0:
+ return max;
+
+ case 1:
+ return count_bit_noESC(ix, end, s);
+
+ case 2:
+ case 3:
+ return count_bit_noESC_from2(ix, end, huf_tbl_noESC[max - 1], s);
+
+ case 4:
+ case 5:
+ case 6:
+ case 7:
+ case 8:
+ case 9:
+ case 10:
+ case 11:
+ case 12:
+ case 13:
+ case 14:
+ case 15:
+ return count_bit_noESC_from3(ix, end, huf_tbl_noESC[max - 1], s);
+
+ default:
+ /* try tables with linbits */
+ if (max > IXMAX_VAL) {
+ *s = LARGE_BITS;
+ return -1;
+ }
+ max -= 15;
+ for (choice2 = 24; choice2 < 32; choice2++) {
+ if (ht[choice2].linmax >= max) {
+ break;
+ }
+ }
+
+ for (choice = choice2 - 8; choice < 24; choice++) {
+ if (ht[choice].linmax >= max) {
+ break;
+ }
+ }
+ return count_bit_ESC(ix, end, choice, choice2, s);
+ }
+}
+
+
+
+/*************************************************************************/
+/* count_bit */
+/*************************************************************************/
+int
+noquant_count_bits(lame_internal_flags const *const gfc,
+ gr_info * const gi, calc_noise_data * prev_noise)
+{
+ int bits = 0;
+ int i, a1, a2;
+ int const *const ix = gi->l3_enc;
+
+ i = Min(576, ((gi->max_nonzero_coeff + 2) >> 1) << 1);
+
+ if (prev_noise)
+ prev_noise->sfb_count1 = 0;
+
+ /* Determine count1 region */
+ for (; i > 1; i -= 2)
+ if (ix[i - 1] | ix[i - 2])
+ break;
+ gi->count1 = i;
+
+ /* Determines the number of bits to encode the quadruples. */
+ a1 = a2 = 0;
+ for (; i > 3; i -= 4) {
+ int p;
+ /* hack to check if all values <= 1 */
+ if ((unsigned int) (ix[i - 1] | ix[i - 2] | ix[i - 3] | ix[i - 4]) > 1)
+ break;
+
+ p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1];
+ a1 += t32l[p];
+ a2 += t33l[p];
+ }
+
+ bits = a1;
+ gi->count1table_select = 0;
+ if (a1 > a2) {
+ bits = a2;
+ gi->count1table_select = 1;
+ }
+
+ gi->count1bits = bits;
+ gi->big_values = i;
+ if (i == 0)
+ return bits;
+
+ if (gi->block_type == SHORT_TYPE) {
+ a1 = 3 * gfc->scalefac_band.s[3];
+ if (a1 > gi->big_values)
+ a1 = gi->big_values;
+ a2 = gi->big_values;
+
+ }
+ else if (gi->block_type == NORM_TYPE) {
+ assert(i <= 576); /* bv_scf has 576 entries (0..575) */
+ a1 = gi->region0_count = gfc->bv_scf[i - 2];
+ a2 = gi->region1_count = gfc->bv_scf[i - 1];
+
+ assert(a1 + a2 + 2 < SBPSY_l);
+ a2 = gfc->scalefac_band.l[a1 + a2 + 2];
+ a1 = gfc->scalefac_band.l[a1 + 1];
+ if (a2 < i)
+ gi->table_select[2] = gfc->choose_table(ix + a2, ix + i, &bits);
+
+ }
+ else {
+ gi->region0_count = 7;
+ /*gi->region1_count = SBPSY_l - 7 - 1; */
+ gi->region1_count = SBMAX_l - 1 - 7 - 1;
+ a1 = gfc->scalefac_band.l[7 + 1];
+ a2 = i;
+ if (a1 > a2) {
+ a1 = a2;
+ }
+ }
+
+
+ /* have to allow for the case when bigvalues < region0 < region1 */
+ /* (and region0, region1 are ignored) */
+ a1 = Min(a1, i);
+ a2 = Min(a2, i);
+
+ assert(a1 >= 0);
+ assert(a2 >= 0);
+
+ /* Count the number of bits necessary to code the bigvalues region. */
+ if (0 < a1)
+ gi->table_select[0] = gfc->choose_table(ix, ix + a1, &bits);
+ if (a1 < a2)
+ gi->table_select[1] = gfc->choose_table(ix + a1, ix + a2, &bits);
+ if (gfc->use_best_huffman == 2) {
+ gi->part2_3_length = bits;
+ best_huffman_divide(gfc, gi);
+ bits = gi->part2_3_length;
+ }
+
+
+ if (prev_noise) {
+ if (gi->block_type == NORM_TYPE) {
+ int sfb = 0;
+ while (gfc->scalefac_band.l[sfb] < gi->big_values) {
+ sfb++;
+ }
+ prev_noise->sfb_count1 = sfb;
+ }
+ }
+
+ return bits;
+}
+
+int
+count_bits(lame_internal_flags const *const gfc,
+ const FLOAT * const xr, gr_info * const gi, calc_noise_data * prev_noise)
+{
+ int *const ix = gi->l3_enc;
+
+ /* since quantize_xrpow uses table lookup, we need to check this first: */
+ FLOAT const w = (IXMAX_VAL) / IPOW20(gi->global_gain);
+
+ if (gi->xrpow_max > w)
+ return LARGE_BITS;
+
+ quantize_xrpow(xr, ix, IPOW20(gi->global_gain), gi, prev_noise);
+
+ if (gfc->substep_shaping & 2) {
+ int sfb, j = 0;
+ /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */
+ int const gain = gi->global_gain + gi->scalefac_scale;
+ const FLOAT roundfac = 0.634521682242439 / IPOW20(gain);
+ for (sfb = 0; sfb < gi->sfbmax; sfb++) {
+ int const width = gi->width[sfb];
+ assert(width >= 0);
+ if (!gfc->pseudohalf[sfb]) {
+ j += width;
+ }
+ else {
+ int k;
+ for (k = j, j += width; k < j; ++k) {
+ ix[k] = (xr[k] >= roundfac) ? ix[k] : 0;
+ }
+ }
+ }
+ }
+ return noquant_count_bits(gfc, gi, prev_noise);
+}
+
+/***********************************************************************
+ re-calculate the best scalefac_compress using scfsi
+ the saved bits are kept in the bit reservoir.
+ **********************************************************************/
+
+
+inline static void
+recalc_divide_init(const lame_internal_flags * const gfc,
+ gr_info const *cod_info,
+ int const *const ix, int r01_bits[], int r01_div[], int r0_tbl[], int r1_tbl[])
+{
+ int r0, r1, bigv, r0t, r1t, bits;
+
+ bigv = cod_info->big_values;
+
+ for (r0 = 0; r0 <= 7 + 15; r0++) {
+ r01_bits[r0] = LARGE_BITS;
+ }
+
+ for (r0 = 0; r0 < 16; r0++) {
+ int const a1 = gfc->scalefac_band.l[r0 + 1];
+ int r0bits;
+ if (a1 >= bigv)
+ break;
+ r0bits = 0;
+ r0t = gfc->choose_table(ix, ix + a1, &r0bits);
+
+ for (r1 = 0; r1 < 8; r1++) {
+ int const a2 = gfc->scalefac_band.l[r0 + r1 + 2];
+ if (a2 >= bigv)
+ break;
+
+ bits = r0bits;
+ r1t = gfc->choose_table(ix + a1, ix + a2, &bits);
+ if (r01_bits[r0 + r1] > bits) {
+ r01_bits[r0 + r1] = bits;
+ r01_div[r0 + r1] = r0;
+ r0_tbl[r0 + r1] = r0t;
+ r1_tbl[r0 + r1] = r1t;
+ }
+ }
+ }
+}
+
+inline static void
+recalc_divide_sub(const lame_internal_flags * const gfc,
+ const gr_info * cod_info2,
+ gr_info * const gi,
+ const int *const ix,
+ const int r01_bits[], const int r01_div[], const int r0_tbl[], const int r1_tbl[])
+{
+ int bits, r2, a2, bigv, r2t;
+
+ bigv = cod_info2->big_values;
+
+ for (r2 = 2; r2 < SBMAX_l + 1; r2++) {
+ a2 = gfc->scalefac_band.l[r2];
+ if (a2 >= bigv)
+ break;
+
+ bits = r01_bits[r2 - 2] + cod_info2->count1bits;
+ if (gi->part2_3_length <= bits)
+ break;
+
+ r2t = gfc->choose_table(ix + a2, ix + bigv, &bits);
+ if (gi->part2_3_length <= bits)
+ continue;
+
+ memcpy(gi, cod_info2, sizeof(gr_info));
+ gi->part2_3_length = bits;
+ gi->region0_count = r01_div[r2 - 2];
+ gi->region1_count = r2 - 2 - r01_div[r2 - 2];
+ gi->table_select[0] = r0_tbl[r2 - 2];
+ gi->table_select[1] = r1_tbl[r2 - 2];
+ gi->table_select[2] = r2t;
+ }
+}
+
+
+
+
+void
+best_huffman_divide(const lame_internal_flags * const gfc, gr_info * const gi)
+{
+ int i, a1, a2;
+ gr_info cod_info2;
+ int const *const ix = gi->l3_enc;
+
+ int r01_bits[7 + 15 + 1];
+ int r01_div[7 + 15 + 1];
+ int r0_tbl[7 + 15 + 1];
+ int r1_tbl[7 + 15 + 1];
+
+
+ /* SHORT BLOCK stuff fails for MPEG2 */
+ if (gi->block_type == SHORT_TYPE && gfc->mode_gr == 1)
+ return;
+
+
+ memcpy(&cod_info2, gi, sizeof(gr_info));
+ if (gi->block_type == NORM_TYPE) {
+ recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
+ recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
+ }
+
+ i = cod_info2.big_values;
+ if (i == 0 || (unsigned int) (ix[i - 2] | ix[i - 1]) > 1)
+ return;
+
+ i = gi->count1 + 2;
+ if (i > 576)
+ return;
+
+ /* Determines the number of bits to encode the quadruples. */
+ memcpy(&cod_info2, gi, sizeof(gr_info));
+ cod_info2.count1 = i;
+ a1 = a2 = 0;
+
+ assert(i <= 576);
+
+ for (; i > cod_info2.big_values; i -= 4) {
+ int const p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1];
+ a1 += t32l[p];
+ a2 += t33l[p];
+ }
+ cod_info2.big_values = i;
+
+ cod_info2.count1table_select = 0;
+ if (a1 > a2) {
+ a1 = a2;
+ cod_info2.count1table_select = 1;
+ }
+
+ cod_info2.count1bits = a1;
+
+ if (cod_info2.block_type == NORM_TYPE)
+ recalc_divide_sub(gfc, &cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
+ else {
+ /* Count the number of bits necessary to code the bigvalues region. */
+ cod_info2.part2_3_length = a1;
+ a1 = gfc->scalefac_band.l[7 + 1];
+ if (a1 > i) {
+ a1 = i;
+ }
+ if (a1 > 0)
+ cod_info2.table_select[0] =
+ gfc->choose_table(ix, ix + a1, (int *) &cod_info2.part2_3_length);
+ if (i > a1)
+ cod_info2.table_select[1] =
+ gfc->choose_table(ix + a1, ix + i, (int *) &cod_info2.part2_3_length);
+ if (gi->part2_3_length > cod_info2.part2_3_length)
+ memcpy(gi, &cod_info2, sizeof(gr_info));
+ }
+}
+
+static const int slen1_n[16] = { 1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16 };
+static const int slen2_n[16] = { 1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8 };
+const int slen1_tab[16] = { 0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4 };
+const int slen2_tab[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3 };
+
+static void
+scfsi_calc(int ch, III_side_info_t * l3_side)
+{
+ unsigned int i;
+ int s1, s2, c1, c2;
+ int sfb;
+ gr_info *const gi = &l3_side->tt[1][ch];
+ gr_info const *const g0 = &l3_side->tt[0][ch];
+
+ for (i = 0; i < (sizeof(scfsi_band) / sizeof(int)) - 1; i++) {
+ for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
+ if (g0->scalefac[sfb] != gi->scalefac[sfb]
+ && gi->scalefac[sfb] >= 0)
+ break;
+ }
+ if (sfb == scfsi_band[i + 1]) {
+ for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1]; sfb++) {
+ gi->scalefac[sfb] = -1;
+ }
+ l3_side->scfsi[ch][i] = 1;
+ }
+ }
+
+ s1 = c1 = 0;
+ for (sfb = 0; sfb < 11; sfb++) {
+ if (gi->scalefac[sfb] == -1)
+ continue;
+ c1++;
+ if (s1 < gi->scalefac[sfb])
+ s1 = gi->scalefac[sfb];
+ }
+
+ s2 = c2 = 0;
+ for (; sfb < SBPSY_l; sfb++) {
+ if (gi->scalefac[sfb] == -1)
+ continue;
+ c2++;
+ if (s2 < gi->scalefac[sfb])
+ s2 = gi->scalefac[sfb];
+ }
+
+ for (i = 0; i < 16; i++) {
+ if (s1 < slen1_n[i] && s2 < slen2_n[i]) {
+ int const c = slen1_tab[i] * c1 + slen2_tab[i] * c2;
+ if (gi->part2_length > c) {
+ gi->part2_length = c;
+ gi->scalefac_compress = i;
+ }
+ }
+ }
+}
+
+/*
+Find the optimal way to store the scalefactors.
+Only call this routine after final scalefactors have been
+chosen and the channel/granule will not be re-encoded.
+ */
+void
+best_scalefac_store(const lame_internal_flags * gfc,
+ const int gr, const int ch, III_side_info_t * const l3_side)
+{
+ /* use scalefac_scale if we can */
+ gr_info *const gi = &l3_side->tt[gr][ch];
+ int sfb, i, j, l;
+ int recalc = 0;
+
+ /* remove scalefacs from bands with ix=0. This idea comes
+ * from the AAC ISO docs. added mt 3/00 */
+ /* check if l3_enc=0 */
+ j = 0;
+ for (sfb = 0; sfb < gi->sfbmax; sfb++) {
+ int const width = gi->width[sfb];
+ assert(width >= 0);
+ j += width;
+ for (l = -width; l < 0; l++) {
+ if (gi->l3_enc[l + j] != 0)
+ break;
+ }
+ if (l == 0)
+ gi->scalefac[sfb] = recalc = -2; /* anything goes. */
+ /* only best_scalefac_store and calc_scfsi
+ * know--and only they should know--about the magic number -2.
+ */
+ }
+
+ if (!gi->scalefac_scale && !gi->preflag) {
+ int s = 0;
+ for (sfb = 0; sfb < gi->sfbmax; sfb++)
+ if (gi->scalefac[sfb] > 0)
+ s |= gi->scalefac[sfb];
+
+ if (!(s & 1) && s != 0) {
+ for (sfb = 0; sfb < gi->sfbmax; sfb++)
+ if (gi->scalefac[sfb] > 0)
+ gi->scalefac[sfb] >>= 1;
+
+ gi->scalefac_scale = recalc = 1;
+ }
+ }
+
+ if (!gi->preflag && gi->block_type != SHORT_TYPE && gfc->mode_gr == 2) {
+ for (sfb = 11; sfb < SBPSY_l; sfb++)
+ if (gi->scalefac[sfb] < pretab[sfb] && gi->scalefac[sfb] != -2)
+ break;
+ if (sfb == SBPSY_l) {
+ for (sfb = 11; sfb < SBPSY_l; sfb++)
+ if (gi->scalefac[sfb] > 0)
+ gi->scalefac[sfb] -= pretab[sfb];
+
+ gi->preflag = recalc = 1;
+ }
+ }
+
+ for (i = 0; i < 4; i++)
+ l3_side->scfsi[ch][i] = 0;
+
+ if (gfc->mode_gr == 2 && gr == 1
+ && l3_side->tt[0][ch].block_type != SHORT_TYPE
+ && l3_side->tt[1][ch].block_type != SHORT_TYPE) {
+ scfsi_calc(ch, l3_side);
+ recalc = 0;
+ }
+ for (sfb = 0; sfb < gi->sfbmax; sfb++) {
+ if (gi->scalefac[sfb] == -2) {
+ gi->scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */
+ }
+ }
+ if (recalc) {
+ if (gfc->mode_gr == 2) {
+ (void) scale_bitcount(gi);
+ }
+ else {
+ (void) scale_bitcount_lsf(gfc, gi);
+ }
+ }
+}
+
+
+#ifndef NDEBUG
+static int
+all_scalefactors_not_negative(int const *scalefac, int n)
+{
+ int i;
+ for (i = 0; i < n; ++i) {
+ if (scalefac[i] < 0)
+ return 0;
+ }
+ return 1;
+}
+#endif
+
+
+/* number of bits used to encode scalefacs */
+
+/* 18*slen1_tab[i] + 18*slen2_tab[i] */
+static const int scale_short[16] = {
+ 0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126
+};
+
+/* 17*slen1_tab[i] + 18*slen2_tab[i] */
+static const int scale_mixed[16] = {
+ 0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122
+};
+
+/* 11*slen1_tab[i] + 10*slen2_tab[i] */
+static const int scale_long[16] = {
+ 0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74
+};
+
+
+/*************************************************************************/
+/* scale_bitcount */
+/*************************************************************************/
+
+/* Also calculates the number of bits necessary to code the scalefactors. */
+
+int
+scale_bitcount(gr_info * const cod_info)
+{
+ int k, sfb, max_slen1 = 0, max_slen2 = 0;
+
+ /* maximum values */
+ const int *tab;
+ int *const scalefac = cod_info->scalefac;
+
+ assert(all_scalefactors_not_negative(scalefac, cod_info->sfbmax));
+
+ if (cod_info->block_type == SHORT_TYPE) {
+ tab = scale_short;
+ if (cod_info->mixed_block_flag)
+ tab = scale_mixed;
+ }
+ else { /* block_type == 1,2,or 3 */
+ tab = scale_long;
+ if (!cod_info->preflag) {
+ for (sfb = 11; sfb < SBPSY_l; sfb++)
+ if (scalefac[sfb] < pretab[sfb])
+ break;
+
+ if (sfb == SBPSY_l) {
+ cod_info->preflag = 1;
+ for (sfb = 11; sfb < SBPSY_l; sfb++)
+ scalefac[sfb] -= pretab[sfb];
+ }
+ }
+ }
+
+ for (sfb = 0; sfb < cod_info->sfbdivide; sfb++)
+ if (max_slen1 < scalefac[sfb])
+ max_slen1 = scalefac[sfb];
+
+ for (; sfb < cod_info->sfbmax; sfb++)
+ if (max_slen2 < scalefac[sfb])
+ max_slen2 = scalefac[sfb];
+
+ /* from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99
+ * loop over *all* posible values of scalefac_compress to find the
+ * one which uses the smallest number of bits. ISO would stop
+ * at first valid index */
+ cod_info->part2_length = LARGE_BITS;
+ for (k = 0; k < 16; k++) {
+ if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k]
+ && cod_info->part2_length > tab[k]) {
+ cod_info->part2_length = tab[k];
+ cod_info->scalefac_compress = k;
+ }
+ }
+ return cod_info->part2_length == LARGE_BITS;
+}
+
+
+
+/*
+ table of largest scalefactor values for MPEG2
+*/
+static const int max_range_sfac_tab[6][4] = {
+ {15, 15, 7, 7},
+ {15, 15, 7, 0},
+ {7, 3, 0, 0},
+ {15, 31, 31, 0},
+ {7, 7, 7, 0},
+ {3, 3, 0, 0}
+};
+
+
+
+
+/*************************************************************************/
+/* scale_bitcount_lsf */
+/*************************************************************************/
+
+/* Also counts the number of bits to encode the scalefacs but for MPEG 2 */
+/* Lower sampling frequencies (24, 22.05 and 16 kHz.) */
+
+/* This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS, */
+/* "Audio Decoding Layer III" */
+
+int
+scale_bitcount_lsf(const lame_internal_flags * gfc, gr_info * const cod_info)
+{
+ int table_number, row_in_table, partition, nr_sfb, window, over;
+ int i, sfb, max_sfac[4];
+ const int *partition_table;
+ int const *const scalefac = cod_info->scalefac;
+
+ /*
+ Set partition table. Note that should try to use table one,
+ but do not yet...
+ */
+ if (cod_info->preflag)
+ table_number = 2;
+ else
+ table_number = 0;
+
+ for (i = 0; i < 4; i++)
+ max_sfac[i] = 0;
+
+ if (cod_info->block_type == SHORT_TYPE) {
+ row_in_table = 1;
+ partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
+ for (sfb = 0, partition = 0; partition < 4; partition++) {
+ nr_sfb = partition_table[partition] / 3;
+ for (i = 0; i < nr_sfb; i++, sfb++)
+ for (window = 0; window < 3; window++)
+ if (scalefac[sfb * 3 + window] > max_sfac[partition])
+ max_sfac[partition] = scalefac[sfb * 3 + window];
+ }
+ }
+ else {
+ row_in_table = 0;
+ partition_table = &nr_of_sfb_block[table_number][row_in_table][0];
+ for (sfb = 0, partition = 0; partition < 4; partition++) {
+ nr_sfb = partition_table[partition];
+ for (i = 0; i < nr_sfb; i++, sfb++)
+ if (scalefac[sfb] > max_sfac[partition])
+ max_sfac[partition] = scalefac[sfb];
+ }
+ }
+
+ for (over = 0, partition = 0; partition < 4; partition++) {
+ if (max_sfac[partition] > max_range_sfac_tab[table_number][partition])
+ over++;
+ }
+ if (!over) {
+ /*
+ Since no bands have been over-amplified, we can set scalefac_compress
+ and slen[] for the formatter
+ */
+ static const int log2tab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 };
+
+ int slen1, slen2, slen3, slen4;
+
+ cod_info->sfb_partition_table = nr_of_sfb_block[table_number][row_in_table];
+ for (partition = 0; partition < 4; partition++)
+ cod_info->slen[partition] = log2tab[max_sfac[partition]];
+
+ /* set scalefac_compress */
+ slen1 = cod_info->slen[0];
+ slen2 = cod_info->slen[1];
+ slen3 = cod_info->slen[2];
+ slen4 = cod_info->slen[3];
+
+ switch (table_number) {
+ case 0:
+ cod_info->scalefac_compress = (((slen1 * 5) + slen2) << 4)
+ + (slen3 << 2)
+ + slen4;
+ break;
+
+ case 1:
+ cod_info->scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2)
+ + slen3;
+ break;
+
+ case 2:
+ cod_info->scalefac_compress = 500 + (slen1 * 3) + slen2;
+ break;
+
+ default:
+ ERRORF(gfc, "intensity stereo not implemented yet\n");
+ break;
+ }
+ }
+#ifdef DEBUG
+ if (over)
+ ERRORF(gfc, "---WARNING !! Amplification of some bands over limits\n");
+#endif
+ if (!over) {
+ assert(cod_info->sfb_partition_table);
+ cod_info->part2_length = 0;
+ for (partition = 0; partition < 4; partition++)
+ cod_info->part2_length +=
+ cod_info->slen[partition] * cod_info->sfb_partition_table[partition];
+ }
+ return over;
+}
+
+
+#ifdef MMX_choose_table
+extern int choose_table_MMX(const int *ix, const int *const end, int *const s);
+#endif
+
+void
+huffman_init(lame_internal_flags * const gfc)
+{
+ int i;
+
+ gfc->choose_table = choose_table_nonMMX;
+
+#ifdef MMX_choose_table
+ if (gfc->CPU_features.MMX) {
+ gfc->choose_table = choose_table_MMX;
+ }
+#endif
+
+ for (i = 2; i <= 576; i += 2) {
+ int scfb_anz = 0, bv_index;
+ while (gfc->scalefac_band.l[++scfb_anz] < i);
+
+ bv_index = subdv_table[scfb_anz].region0_count;
+ while (gfc->scalefac_band.l[bv_index + 1] > i)
+ bv_index--;
+
+ if (bv_index < 0) {
+ /* this is an indication that everything is going to
+ be encoded as region0: bigvalues < region0 < region1
+ so lets set region0, region1 to some value larger
+ than bigvalues */
+ bv_index = subdv_table[scfb_anz].region0_count;
+ }
+
+ gfc->bv_scf[i - 2] = bv_index;
+
+ bv_index = subdv_table[scfb_anz].region1_count;
+ while (gfc->scalefac_band.l[bv_index + gfc->bv_scf[i - 2] + 2] > i)
+ bv_index--;
+
+ if (bv_index < 0) {
+ bv_index = subdv_table[scfb_anz].region1_count;
+ }
+
+ gfc->bv_scf[i - 1] = bv_index;
+ }
+}