aboutsummaryrefslogtreecommitdiff
path: root/lib/ffmpeg/libavcodec/aaccoder.c
diff options
context:
space:
mode:
authortheuni <theuni-nospam-@xbmc.org>2011-01-24 16:05:21 -0500
committertheuni <theuni-nospam-@xbmc.org>2011-01-24 16:05:21 -0500
commitc51b1189e3d5353e842991f5859ddcea0f73e426 (patch)
treeef2cb8a6184699aa614f3655dca4ce661cdc108e /lib/ffmpeg/libavcodec/aaccoder.c
parentbe61ebdc9e897fe40c6f371111724de79ddee8d5 (diff)
Merged cptspiff's code-reshuffle branch.
Squashed commit due to build breakage during code-reshuffle history. Conflicts: xbmc/Util.cpp xbmc/cdrip/CDDARipper.cpp xbmc/filesystem/Directory.cpp xbmc/filesystem/File.cpp
Diffstat (limited to 'lib/ffmpeg/libavcodec/aaccoder.c')
-rw-r--r--lib/ffmpeg/libavcodec/aaccoder.c1054
1 files changed, 1054 insertions, 0 deletions
diff --git a/lib/ffmpeg/libavcodec/aaccoder.c b/lib/ffmpeg/libavcodec/aaccoder.c
new file mode 100644
index 0000000000..81ece4b23b
--- /dev/null
+++ b/lib/ffmpeg/libavcodec/aaccoder.c
@@ -0,0 +1,1054 @@
+/*
+ * AAC coefficients encoder
+ * Copyright (C) 2008-2009 Konstantin Shishkov
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * AAC coefficients encoder
+ */
+
+/***********************************
+ * TODOs:
+ * speedup quantizer selection
+ * add sane pulse detection
+ ***********************************/
+
+#include <float.h>
+#include "avcodec.h"
+#include "put_bits.h"
+#include "aac.h"
+#include "aacenc.h"
+#include "aactab.h"
+
+/** bits needed to code codebook run value for long windows */
+static const uint8_t run_value_bits_long[64] = {
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
+};
+
+/** bits needed to code codebook run value for short windows */
+static const uint8_t run_value_bits_short[16] = {
+ 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
+};
+
+static const uint8_t *run_value_bits[2] = {
+ run_value_bits_long, run_value_bits_short
+};
+
+
+/**
+ * Quantize one coefficient.
+ * @return absolute value of the quantized coefficient
+ * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
+ */
+static av_always_inline int quant(float coef, const float Q)
+{
+ float a = coef * Q;
+ return sqrtf(a * sqrtf(a)) + 0.4054;
+}
+
+static void quantize_bands(int *out, const float *in, const float *scaled,
+ int size, float Q34, int is_signed, int maxval)
+{
+ int i;
+ double qc;
+ for (i = 0; i < size; i++) {
+ qc = scaled[i] * Q34;
+ out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
+ if (is_signed && in[i] < 0.0f) {
+ out[i] = -out[i];
+ }
+ }
+}
+
+static void abs_pow34_v(float *out, const float *in, const int size)
+{
+#ifndef USE_REALLY_FULL_SEARCH
+ int i;
+ for (i = 0; i < size; i++) {
+ float a = fabsf(in[i]);
+ out[i] = sqrtf(a * sqrtf(a));
+ }
+#endif /* USE_REALLY_FULL_SEARCH */
+}
+
+static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
+static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
+
+/**
+ * Calculate rate distortion cost for quantizing with given codebook
+ *
+ * @return quantization distortion
+ */
+static float quantize_and_encode_band_cost(struct AACEncContext *s,
+ PutBitContext *pb, const float *in,
+ const float *scaled, int size, int scale_idx,
+ int cb, const float lambda, const float uplim,
+ int *bits)
+{
+ const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
+ const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
+ const float CLIPPED_ESCAPE = 165140.0f*IQ;
+ int i, j, k;
+ float cost = 0;
+ const int dim = cb < FIRST_PAIR_BT ? 4 : 2;
+ int resbits = 0;
+ const float Q34 = sqrtf(Q * sqrtf(Q));
+ const int range = aac_cb_range[cb];
+ const int maxval = aac_cb_maxval[cb];
+ int off;
+
+ if (!cb) {
+ for (i = 0; i < size; i++)
+ cost += in[i]*in[i];
+ if (bits)
+ *bits = 0;
+ return cost * lambda;
+ }
+ if (!scaled) {
+ abs_pow34_v(s->scoefs, in, size);
+ scaled = s->scoefs;
+ }
+ quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval);
+ if (IS_CODEBOOK_UNSIGNED(cb)) {
+ off = 0;
+ } else {
+ off = maxval;
+ }
+ for (i = 0; i < size; i += dim) {
+ const float *vec;
+ int *quants = s->qcoefs + i;
+ int curidx = 0;
+ int curbits;
+ float rd = 0.0f;
+ for (j = 0; j < dim; j++) {
+ curidx *= range;
+ curidx += quants[j] + off;
+ }
+ curbits = ff_aac_spectral_bits[cb-1][curidx];
+ vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
+ if (IS_CODEBOOK_UNSIGNED(cb)) {
+ for (k = 0; k < dim; k++) {
+ float t = fabsf(in[i+k]);
+ float di;
+ if (vec[k] == 64.0f) { //FIXME: slow
+ if (t >= CLIPPED_ESCAPE) {
+ di = t - CLIPPED_ESCAPE;
+ curbits += 21;
+ } else {
+ int c = av_clip(quant(t, Q), 0, 8191);
+ di = t - c*cbrtf(c)*IQ;
+ curbits += av_log2(c)*2 - 4 + 1;
+ }
+ } else {
+ di = t - vec[k]*IQ;
+ }
+ if (vec[k] != 0.0f)
+ curbits++;
+ rd += di*di;
+ }
+ } else {
+ for (k = 0; k < dim; k++) {
+ float di = in[i+k] - vec[k]*IQ;
+ rd += di*di;
+ }
+ }
+ cost += rd * lambda + curbits;
+ resbits += curbits;
+ if (cost >= uplim)
+ return uplim;
+ if (pb) {
+ put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
+ if (IS_CODEBOOK_UNSIGNED(cb))
+ for (j = 0; j < dim; j++)
+ if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
+ put_bits(pb, 1, in[i+j] < 0.0f);
+ if (cb == ESC_BT) {
+ for (j = 0; j < 2; j++) {
+ if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
+ int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
+ int len = av_log2(coef);
+
+ put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
+ put_bits(pb, len, coef & ((1 << len) - 1));
+ }
+ }
+ }
+ }
+ }
+
+ if (bits)
+ *bits = resbits;
+ return cost;
+}
+static float quantize_band_cost(struct AACEncContext *s, const float *in,
+ const float *scaled, int size, int scale_idx,
+ int cb, const float lambda, const float uplim,
+ int *bits)
+{
+ return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
+ cb, lambda, uplim, bits);
+}
+
+static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
+ const float *in, int size, int scale_idx,
+ int cb, const float lambda)
+{
+ quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
+ INFINITY, NULL);
+}
+
+static float find_max_val(int group_len, int swb_size, const float *scaled) {
+ float maxval = 0.0f;
+ int w2, i;
+ for (w2 = 0; w2 < group_len; w2++) {
+ for (i = 0; i < swb_size; i++) {
+ maxval = FFMAX(maxval, scaled[w2*128+i]);
+ }
+ }
+ return maxval;
+}
+
+static int find_min_book(float maxval, int sf) {
+ float Q = ff_aac_pow2sf_tab[200 - sf + SCALE_ONE_POS - SCALE_DIV_512];
+ float Q34 = sqrtf(Q * sqrtf(Q));
+ int qmaxval, cb;
+ qmaxval = maxval * Q34 + 0.4054f;
+ if (qmaxval == 0) cb = 0;
+ else if (qmaxval == 1) cb = 1;
+ else if (qmaxval == 2) cb = 3;
+ else if (qmaxval <= 4) cb = 5;
+ else if (qmaxval <= 7) cb = 7;
+ else if (qmaxval <= 12) cb = 9;
+ else cb = 11;
+ return cb;
+}
+
+/**
+ * structure used in optimal codebook search
+ */
+typedef struct BandCodingPath {
+ int prev_idx; ///< pointer to the previous path point
+ float cost; ///< path cost
+ int run;
+} BandCodingPath;
+
+/**
+ * Encode band info for single window group bands.
+ */
+static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
+ int win, int group_len, const float lambda)
+{
+ BandCodingPath path[120][12];
+ int w, swb, cb, start, start2, size;
+ int i, j;
+ const int max_sfb = sce->ics.max_sfb;
+ const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
+ const int run_esc = (1 << run_bits) - 1;
+ int idx, ppos, count;
+ int stackrun[120], stackcb[120], stack_len;
+ float next_minrd = INFINITY;
+ int next_mincb = 0;
+
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ start = win*128;
+ for (cb = 0; cb < 12; cb++) {
+ path[0][cb].cost = 0.0f;
+ path[0][cb].prev_idx = -1;
+ path[0][cb].run = 0;
+ }
+ for (swb = 0; swb < max_sfb; swb++) {
+ start2 = start;
+ size = sce->ics.swb_sizes[swb];
+ if (sce->zeroes[win*16 + swb]) {
+ for (cb = 0; cb < 12; cb++) {
+ path[swb+1][cb].prev_idx = cb;
+ path[swb+1][cb].cost = path[swb][cb].cost;
+ path[swb+1][cb].run = path[swb][cb].run + 1;
+ }
+ } else {
+ float minrd = next_minrd;
+ int mincb = next_mincb;
+ next_minrd = INFINITY;
+ next_mincb = 0;
+ for (cb = 0; cb < 12; cb++) {
+ float cost_stay_here, cost_get_here;
+ float rd = 0.0f;
+ for (w = 0; w < group_len; w++) {
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
+ rd += quantize_band_cost(s, sce->coeffs + start + w*128,
+ s->scoefs + start + w*128, size,
+ sce->sf_idx[(win+w)*16+swb], cb,
+ lambda / band->threshold, INFINITY, NULL);
+ }
+ cost_stay_here = path[swb][cb].cost + rd;
+ cost_get_here = minrd + rd + run_bits + 4;
+ if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
+ != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
+ cost_stay_here += run_bits;
+ if (cost_get_here < cost_stay_here) {
+ path[swb+1][cb].prev_idx = mincb;
+ path[swb+1][cb].cost = cost_get_here;
+ path[swb+1][cb].run = 1;
+ } else {
+ path[swb+1][cb].prev_idx = cb;
+ path[swb+1][cb].cost = cost_stay_here;
+ path[swb+1][cb].run = path[swb][cb].run + 1;
+ }
+ if (path[swb+1][cb].cost < next_minrd) {
+ next_minrd = path[swb+1][cb].cost;
+ next_mincb = cb;
+ }
+ }
+ }
+ start += sce->ics.swb_sizes[swb];
+ }
+
+ //convert resulting path from backward-linked list
+ stack_len = 0;
+ idx = 0;
+ for (cb = 1; cb < 12; cb++)
+ if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
+ idx = cb;
+ ppos = max_sfb;
+ while (ppos > 0) {
+ cb = idx;
+ stackrun[stack_len] = path[ppos][cb].run;
+ stackcb [stack_len] = cb;
+ idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
+ ppos -= path[ppos][cb].run;
+ stack_len++;
+ }
+ //perform actual band info encoding
+ start = 0;
+ for (i = stack_len - 1; i >= 0; i--) {
+ put_bits(&s->pb, 4, stackcb[i]);
+ count = stackrun[i];
+ memset(sce->zeroes + win*16 + start, !stackcb[i], count);
+ //XXX: memset when band_type is also uint8_t
+ for (j = 0; j < count; j++) {
+ sce->band_type[win*16 + start] = stackcb[i];
+ start++;
+ }
+ while (count >= run_esc) {
+ put_bits(&s->pb, run_bits, run_esc);
+ count -= run_esc;
+ }
+ put_bits(&s->pb, run_bits, count);
+ }
+}
+
+static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
+ int win, int group_len, const float lambda)
+{
+ BandCodingPath path[120][12];
+ int w, swb, cb, start, start2, size;
+ int i, j;
+ const int max_sfb = sce->ics.max_sfb;
+ const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
+ const int run_esc = (1 << run_bits) - 1;
+ int idx, ppos, count;
+ int stackrun[120], stackcb[120], stack_len;
+ float next_minrd = INFINITY;
+ int next_mincb = 0;
+
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ start = win*128;
+ for (cb = 0; cb < 12; cb++) {
+ path[0][cb].cost = run_bits+4;
+ path[0][cb].prev_idx = -1;
+ path[0][cb].run = 0;
+ }
+ for (swb = 0; swb < max_sfb; swb++) {
+ start2 = start;
+ size = sce->ics.swb_sizes[swb];
+ if (sce->zeroes[win*16 + swb]) {
+ for (cb = 0; cb < 12; cb++) {
+ path[swb+1][cb].prev_idx = cb;
+ path[swb+1][cb].cost = path[swb][cb].cost;
+ path[swb+1][cb].run = path[swb][cb].run + 1;
+ }
+ } else {
+ float minrd = next_minrd;
+ int mincb = next_mincb;
+ int startcb = sce->band_type[win*16+swb];
+ next_minrd = INFINITY;
+ next_mincb = 0;
+ for (cb = 0; cb < startcb; cb++) {
+ path[swb+1][cb].cost = 61450;
+ path[swb+1][cb].prev_idx = -1;
+ path[swb+1][cb].run = 0;
+ }
+ for (cb = startcb; cb < 12; cb++) {
+ float cost_stay_here, cost_get_here;
+ float rd = 0.0f;
+ for (w = 0; w < group_len; w++) {
+ rd += quantize_band_cost(s, sce->coeffs + start + w*128,
+ s->scoefs + start + w*128, size,
+ sce->sf_idx[(win+w)*16+swb], cb,
+ 0, INFINITY, NULL);
+ }
+ cost_stay_here = path[swb][cb].cost + rd;
+ cost_get_here = minrd + rd + run_bits + 4;
+ if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
+ != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
+ cost_stay_here += run_bits;
+ if (cost_get_here < cost_stay_here) {
+ path[swb+1][cb].prev_idx = mincb;
+ path[swb+1][cb].cost = cost_get_here;
+ path[swb+1][cb].run = 1;
+ } else {
+ path[swb+1][cb].prev_idx = cb;
+ path[swb+1][cb].cost = cost_stay_here;
+ path[swb+1][cb].run = path[swb][cb].run + 1;
+ }
+ if (path[swb+1][cb].cost < next_minrd) {
+ next_minrd = path[swb+1][cb].cost;
+ next_mincb = cb;
+ }
+ }
+ }
+ start += sce->ics.swb_sizes[swb];
+ }
+
+ //convert resulting path from backward-linked list
+ stack_len = 0;
+ idx = 0;
+ for (cb = 1; cb < 12; cb++)
+ if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
+ idx = cb;
+ ppos = max_sfb;
+ while (ppos > 0) {
+ if (idx < 0) abort();
+ cb = idx;
+ stackrun[stack_len] = path[ppos][cb].run;
+ stackcb [stack_len] = cb;
+ idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
+ ppos -= path[ppos][cb].run;
+ stack_len++;
+ }
+ //perform actual band info encoding
+ start = 0;
+ for (i = stack_len - 1; i >= 0; i--) {
+ put_bits(&s->pb, 4, stackcb[i]);
+ count = stackrun[i];
+ memset(sce->zeroes + win*16 + start, !stackcb[i], count);
+ //XXX: memset when band_type is also uint8_t
+ for (j = 0; j < count; j++) {
+ sce->band_type[win*16 + start] = stackcb[i];
+ start++;
+ }
+ while (count >= run_esc) {
+ put_bits(&s->pb, run_bits, run_esc);
+ count -= run_esc;
+ }
+ put_bits(&s->pb, run_bits, count);
+ }
+}
+
+typedef struct TrellisPath {
+ float cost;
+ int prev;
+} TrellisPath;
+
+#define TRELLIS_STAGES 121
+#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
+
+static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
+ SingleChannelElement *sce,
+ const float lambda)
+{
+ int q, w, w2, g, start = 0;
+ int i, j;
+ int idx;
+ TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
+ int bandaddr[TRELLIS_STAGES];
+ int minq;
+ float mincost;
+ float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
+ int q0, q1, qcnt = 0;
+
+ for (i = 0; i < 1024; i++) {
+ float t = fabsf(sce->coeffs[i]);
+ if (t > 0.0f) {
+ q0f = FFMIN(q0f, t);
+ q1f = FFMAX(q1f, t);
+ qnrgf += t*t;
+ qcnt++;
+ }
+ }
+
+ if (!qcnt) {
+ memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
+ memset(sce->zeroes, 1, sizeof(sce->zeroes));
+ return;
+ }
+
+ //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
+ q0 = av_clip_uint8(log2(q0f)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
+ //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
+ q1 = av_clip_uint8(log2(q1f)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
+ //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
+ if (q1 - q0 > 60) {
+ int q0low = q0;
+ int q1high = q1;
+ //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
+ int qnrg = av_clip_uint8(log2(sqrt(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
+ q1 = qnrg + 30;
+ q0 = qnrg - 30;
+ //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
+ if (q0 < q0low) {
+ q1 += q0low - q0;
+ q0 = q0low;
+ } else if (q1 > q1high) {
+ q0 -= q1 - q1high;
+ q1 = q1high;
+ }
+ }
+ //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
+
+ for (i = 0; i < TRELLIS_STATES; i++) {
+ paths[0][i].cost = 0.0f;
+ paths[0][i].prev = -1;
+ }
+ for (j = 1; j < TRELLIS_STAGES; j++) {
+ for (i = 0; i < TRELLIS_STATES; i++) {
+ paths[j][i].cost = INFINITY;
+ paths[j][i].prev = -2;
+ }
+ }
+ idx = 1;
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ start = w*128;
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ const float *coefs = sce->coeffs + start;
+ float qmin, qmax;
+ int nz = 0;
+
+ bandaddr[idx] = w * 16 + g;
+ qmin = INT_MAX;
+ qmax = 0.0f;
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
+ if (band->energy <= band->threshold || band->threshold == 0.0f) {
+ sce->zeroes[(w+w2)*16+g] = 1;
+ continue;
+ }
+ sce->zeroes[(w+w2)*16+g] = 0;
+ nz = 1;
+ for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
+ float t = fabsf(coefs[w2*128+i]);
+ if (t > 0.0f)
+ qmin = FFMIN(qmin, t);
+ qmax = FFMAX(qmax, t);
+ }
+ }
+ if (nz) {
+ int minscale, maxscale;
+ float minrd = INFINITY;
+ float maxval;
+ //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
+ minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
+ //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
+ maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
+ minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
+ maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
+ maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
+ for (q = minscale; q < maxscale; q++) {
+ float dist = 0;
+ int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
+ dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
+ q + q0, cb, lambda / band->threshold, INFINITY, NULL);
+ }
+ minrd = FFMIN(minrd, dist);
+
+ for (i = 0; i < q1 - q0; i++) {
+ float cost;
+ cost = paths[idx - 1][i].cost + dist
+ + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
+ if (cost < paths[idx][q].cost) {
+ paths[idx][q].cost = cost;
+ paths[idx][q].prev = i;
+ }
+ }
+ }
+ } else {
+ for (q = 0; q < q1 - q0; q++) {
+ paths[idx][q].cost = paths[idx - 1][q].cost + 1;
+ paths[idx][q].prev = q;
+ }
+ }
+ sce->zeroes[w*16+g] = !nz;
+ start += sce->ics.swb_sizes[g];
+ idx++;
+ }
+ }
+ idx--;
+ mincost = paths[idx][0].cost;
+ minq = 0;
+ for (i = 1; i < TRELLIS_STATES; i++) {
+ if (paths[idx][i].cost < mincost) {
+ mincost = paths[idx][i].cost;
+ minq = i;
+ }
+ }
+ while (idx) {
+ sce->sf_idx[bandaddr[idx]] = minq + q0;
+ minq = paths[idx][minq].prev;
+ idx--;
+ }
+ //set the same quantizers inside window groups
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
+ for (g = 0; g < sce->ics.num_swb; g++)
+ for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
+ sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
+}
+
+/**
+ * two-loop quantizers search taken from ISO 13818-7 Appendix C
+ */
+static void search_for_quantizers_twoloop(AVCodecContext *avctx,
+ AACEncContext *s,
+ SingleChannelElement *sce,
+ const float lambda)
+{
+ int start = 0, i, w, w2, g;
+ int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
+ float dists[128], uplims[128];
+ int fflag, minscaler;
+ int its = 0;
+ int allz = 0;
+ float minthr = INFINITY;
+
+ //XXX: some heuristic to determine initial quantizers will reduce search time
+ memset(dists, 0, sizeof(dists));
+ //determine zero bands and upper limits
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ int nz = 0;
+ float uplim = 0.0f;
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
+ uplim += band->threshold;
+ if (band->energy <= band->threshold || band->threshold == 0.0f) {
+ sce->zeroes[(w+w2)*16+g] = 1;
+ continue;
+ }
+ nz = 1;
+ }
+ uplims[w*16+g] = uplim *512;
+ sce->zeroes[w*16+g] = !nz;
+ if (nz)
+ minthr = FFMIN(minthr, uplim);
+ allz = FFMAX(allz, nz);
+ }
+ }
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ if (sce->zeroes[w*16+g]) {
+ sce->sf_idx[w*16+g] = SCALE_ONE_POS;
+ continue;
+ }
+ sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59);
+ }
+ }
+
+ if (!allz)
+ return;
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ //perform two-loop search
+ //outer loop - improve quality
+ do {
+ int tbits, qstep;
+ minscaler = sce->sf_idx[0];
+ //inner loop - quantize spectrum to fit into given number of bits
+ qstep = its ? 1 : 32;
+ do {
+ int prev = -1;
+ tbits = 0;
+ fflag = 0;
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ start = w*128;
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ const float *coefs = sce->coeffs + start;
+ const float *scaled = s->scoefs + start;
+ int bits = 0;
+ int cb;
+ float dist = 0.0f;
+
+ if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
+ start += sce->ics.swb_sizes[g];
+ continue;
+ }
+ minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
+ cb = find_min_book(find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled), sce->sf_idx[w*16+g]);
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ int b;
+ dist += quantize_band_cost(s, coefs + w2*128,
+ scaled + w2*128,
+ sce->ics.swb_sizes[g],
+ sce->sf_idx[w*16+g],
+ cb,
+ 1.0f,
+ INFINITY,
+ &b);
+ bits += b;
+ }
+ dists[w*16+g] = dist - bits;
+ if (prev != -1) {
+ bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
+ }
+ tbits += bits;
+ start += sce->ics.swb_sizes[g];
+ prev = sce->sf_idx[w*16+g];
+ }
+ }
+ if (tbits > destbits) {
+ for (i = 0; i < 128; i++)
+ if (sce->sf_idx[i] < 218 - qstep)
+ sce->sf_idx[i] += qstep;
+ } else {
+ for (i = 0; i < 128; i++)
+ if (sce->sf_idx[i] > 60 - qstep)
+ sce->sf_idx[i] -= qstep;
+ }
+ qstep >>= 1;
+ if (!qstep && tbits > destbits*1.02)
+ qstep = 1;
+ if (sce->sf_idx[0] >= 217)
+ break;
+ } while (qstep);
+
+ fflag = 0;
+ minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ start = w*128;
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ int prevsc = sce->sf_idx[w*16+g];
+ const float *scaled = s->scoefs + start;
+ if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
+ sce->sf_idx[w*16+g]--;
+ sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
+ sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
+ if (sce->sf_idx[w*16+g] != prevsc)
+ fflag = 1;
+ sce->band_type[w*16+g] = find_min_book(find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled), sce->sf_idx[w*16+g]);
+ start += sce->ics.swb_sizes[g];
+ }
+ }
+ its++;
+ } while (fflag && its < 10);
+}
+
+static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
+ SingleChannelElement *sce,
+ const float lambda)
+{
+ int start = 0, i, w, w2, g;
+ float uplim[128], maxq[128];
+ int minq, maxsf;
+ float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
+ int last = 0, lastband = 0, curband = 0;
+ float avg_energy = 0.0;
+ if (sce->ics.num_windows == 1) {
+ start = 0;
+ for (i = 0; i < 1024; i++) {
+ if (i - start >= sce->ics.swb_sizes[curband]) {
+ start += sce->ics.swb_sizes[curband];
+ curband++;
+ }
+ if (sce->coeffs[i]) {
+ avg_energy += sce->coeffs[i] * sce->coeffs[i];
+ last = i;
+ lastband = curband;
+ }
+ }
+ } else {
+ for (w = 0; w < 8; w++) {
+ const float *coeffs = sce->coeffs + w*128;
+ start = 0;
+ for (i = 0; i < 128; i++) {
+ if (i - start >= sce->ics.swb_sizes[curband]) {
+ start += sce->ics.swb_sizes[curband];
+ curband++;
+ }
+ if (coeffs[i]) {
+ avg_energy += coeffs[i] * coeffs[i];
+ last = FFMAX(last, i);
+ lastband = FFMAX(lastband, curband);
+ }
+ }
+ }
+ }
+ last++;
+ avg_energy /= last;
+ if (avg_energy == 0.0f) {
+ for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
+ sce->sf_idx[i] = SCALE_ONE_POS;
+ return;
+ }
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ start = w*128;
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ float *coefs = sce->coeffs + start;
+ const int size = sce->ics.swb_sizes[g];
+ int start2 = start, end2 = start + size, peakpos = start;
+ float maxval = -1, thr = 0.0f, t;
+ maxq[w*16+g] = 0.0f;
+ if (g > lastband) {
+ maxq[w*16+g] = 0.0f;
+ start += size;
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
+ memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
+ continue;
+ }
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ for (i = 0; i < size; i++) {
+ float t = coefs[w2*128+i]*coefs[w2*128+i];
+ maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
+ thr += t;
+ if (sce->ics.num_windows == 1 && maxval < t) {
+ maxval = t;
+ peakpos = start+i;
+ }
+ }
+ }
+ if (sce->ics.num_windows == 1) {
+ start2 = FFMAX(peakpos - 2, start2);
+ end2 = FFMIN(peakpos + 3, end2);
+ } else {
+ start2 -= start;
+ end2 -= start;
+ }
+ start += size;
+ thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
+ t = 1.0 - (1.0 * start2 / last);
+ uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
+ }
+ }
+ memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
+ abs_pow34_v(s->scoefs, sce->coeffs, 1024);
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ start = w*128;
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ const float *coefs = sce->coeffs + start;
+ const float *scaled = s->scoefs + start;
+ const int size = sce->ics.swb_sizes[g];
+ int scf, prev_scf, step;
+ int min_scf = -1, max_scf = 256;
+ float curdiff;
+ if (maxq[w*16+g] < 21.544) {
+ sce->zeroes[w*16+g] = 1;
+ start += size;
+ continue;
+ }
+ sce->zeroes[w*16+g] = 0;
+ scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
+ step = 16;
+ for (;;) {
+ float dist = 0.0f;
+ int quant_max;
+
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ int b;
+ dist += quantize_band_cost(s, coefs + w2*128,
+ scaled + w2*128,
+ sce->ics.swb_sizes[g],
+ scf,
+ ESC_BT,
+ lambda,
+ INFINITY,
+ &b);
+ dist -= b;
+ }
+ dist *= 1.0f / 512.0f / lambda;
+ quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
+ if (quant_max >= 8191) { // too much, return to the previous quantizer
+ sce->sf_idx[w*16+g] = prev_scf;
+ break;
+ }
+ prev_scf = scf;
+ curdiff = fabsf(dist - uplim[w*16+g]);
+ if (curdiff <= 1.0f)
+ step = 0;
+ else
+ step = log2(curdiff);
+ if (dist > uplim[w*16+g])
+ step = -step;
+ scf += step;
+ scf = av_clip_uint8(scf);
+ step = scf - prev_scf;
+ if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
+ sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
+ break;
+ }
+ if (step > 0)
+ min_scf = prev_scf;
+ else
+ max_scf = prev_scf;
+ }
+ start += size;
+ }
+ }
+ minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
+ for (i = 1; i < 128; i++) {
+ if (!sce->sf_idx[i])
+ sce->sf_idx[i] = sce->sf_idx[i-1];
+ else
+ minq = FFMIN(minq, sce->sf_idx[i]);
+ }
+ if (minq == INT_MAX)
+ minq = 0;
+ minq = FFMIN(minq, SCALE_MAX_POS);
+ maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
+ for (i = 126; i >= 0; i--) {
+ if (!sce->sf_idx[i])
+ sce->sf_idx[i] = sce->sf_idx[i+1];
+ sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
+ }
+}
+
+static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
+ SingleChannelElement *sce,
+ const float lambda)
+{
+ int start = 0, i, w, w2, g;
+ int minq = 255;
+
+ memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
+ start = w*128;
+ for (g = 0; g < sce->ics.num_swb; g++) {
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
+ if (band->energy <= band->threshold) {
+ sce->sf_idx[(w+w2)*16+g] = 218;
+ sce->zeroes[(w+w2)*16+g] = 1;
+ } else {
+ sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
+ sce->zeroes[(w+w2)*16+g] = 0;
+ }
+ minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
+ }
+ }
+ }
+ for (i = 0; i < 128; i++) {
+ sce->sf_idx[i] = 140;
+ //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
+ }
+ //set the same quantizers inside window groups
+ for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
+ for (g = 0; g < sce->ics.num_swb; g++)
+ for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
+ sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
+}
+
+static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
+ const float lambda)
+{
+ int start = 0, i, w, w2, g;
+ float M[128], S[128];
+ float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
+ SingleChannelElement *sce0 = &cpe->ch[0];
+ SingleChannelElement *sce1 = &cpe->ch[1];
+ if (!cpe->common_window)
+ return;
+ for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
+ for (g = 0; g < sce0->ics.num_swb; g++) {
+ if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
+ float dist1 = 0.0f, dist2 = 0.0f;
+ for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
+ FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
+ FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
+ float minthr = FFMIN(band0->threshold, band1->threshold);
+ float maxthr = FFMAX(band0->threshold, band1->threshold);
+ for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
+ M[i] = (sce0->coeffs[start+w2*128+i]
+ + sce1->coeffs[start+w2*128+i]) * 0.5;
+ S[i] = sce0->coeffs[start+w2*128+i]
+ - sce1->coeffs[start+w2*128+i];
+ }
+ abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
+ abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
+ abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
+ abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
+ dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
+ L34,
+ sce0->ics.swb_sizes[g],
+ sce0->sf_idx[(w+w2)*16+g],
+ sce0->band_type[(w+w2)*16+g],
+ lambda / band0->threshold, INFINITY, NULL);
+ dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
+ R34,
+ sce1->ics.swb_sizes[g],
+ sce1->sf_idx[(w+w2)*16+g],
+ sce1->band_type[(w+w2)*16+g],
+ lambda / band1->threshold, INFINITY, NULL);
+ dist2 += quantize_band_cost(s, M,
+ M34,
+ sce0->ics.swb_sizes[g],
+ sce0->sf_idx[(w+w2)*16+g],
+ sce0->band_type[(w+w2)*16+g],
+ lambda / maxthr, INFINITY, NULL);
+ dist2 += quantize_band_cost(s, S,
+ S34,
+ sce1->ics.swb_sizes[g],
+ sce1->sf_idx[(w+w2)*16+g],
+ sce1->band_type[(w+w2)*16+g],
+ lambda / minthr, INFINITY, NULL);
+ }
+ cpe->ms_mask[w*16+g] = dist2 < dist1;
+ }
+ start += sce0->ics.swb_sizes[g];
+ }
+ }
+}
+
+AACCoefficientsEncoder ff_aac_coders[] = {
+ {
+ search_for_quantizers_faac,
+ encode_window_bands_info,
+ quantize_and_encode_band,
+ search_for_ms,
+ },
+ {
+ search_for_quantizers_anmr,
+ encode_window_bands_info,
+ quantize_and_encode_band,
+ search_for_ms,
+ },
+ {
+ search_for_quantizers_twoloop,
+ codebook_trellis_rate,
+ quantize_and_encode_band,
+ search_for_ms,
+ },
+ {
+ search_for_quantizers_fast,
+ encode_window_bands_info,
+ quantize_and_encode_band,
+ search_for_ms,
+ },
+};