aboutsummaryrefslogtreecommitdiff
path: root/src/util/crypto.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/util/crypto.c')
-rw-r--r--src/util/crypto.c102
1 files changed, 55 insertions, 47 deletions
diff --git a/src/util/crypto.c b/src/util/crypto.c
index aced73f2a..bf91b6971 100644
--- a/src/util/crypto.c
+++ b/src/util/crypto.c
@@ -506,7 +506,7 @@ enum GNUNET_GenericReturnValue
TALER_age_restriction_commit (
const struct TALER_AgeMask *mask,
const uint8_t age,
- const uint32_t seed,
+ const uint64_t salt,
struct TALER_AgeCommitment *new)
{
uint8_t num_pub = __builtin_popcount (mask->mask) - 1;
@@ -517,6 +517,7 @@ TALER_age_restriction_commit (
GNUNET_assert (mask->mask & 1); /* fist bit must have been set */
GNUNET_assert (0 <= num_priv);
GNUNET_assert (31 > num_priv);
+ GNUNET_assert (num_priv <= num_pub);
new->mask.mask = mask->mask;
new->num_pub = num_pub;
@@ -529,32 +530,35 @@ TALER_age_restriction_commit (
num_priv,
struct TALER_AgeCommitmentPrivateKeyP);
- /* Create as many private keys as we need */
- for (i = 0; i < num_priv; i++)
+ /* Create as many private keys as we need and fill the rest of the
+ * public keys with valid curve points.
+ * We need to make sure that the public keys are proper points on the
+ * elliptic curve, so we can't simply fill the struct with random values. */
+ for (i = 0; i < num_pub; i++)
{
- uint32_t seedBE = htonl (seed + i);
+ uint64_t saltBE = htonl (salt + i);
+ struct TALER_AgeCommitmentPrivateKeyP key = {0};
+ struct TALER_AgeCommitmentPrivateKeyP *priv = &key;
+
+ /* Only save the private keys for age groups less than num_priv */
+ if (i < num_priv)
+ priv = &new->priv[i];
if (GNUNET_OK !=
- GNUNET_CRYPTO_kdf (&new->priv[i],
- sizeof (new->priv[i]),
- &seedBE,
- sizeof (seedBE),
+ GNUNET_CRYPTO_kdf (priv,
+ sizeof (*priv),
+ &saltBE,
+ sizeof (saltBE),
"taler-age-commitment-derivation",
strlen (
"taler-age-commitment-derivation"),
NULL, 0))
goto FAIL;
- GNUNET_CRYPTO_eddsa_key_get_public (&new->priv[i].eddsa_priv,
+ GNUNET_CRYPTO_eddsa_key_get_public (&priv->eddsa_priv,
&new->pub[i].eddsa_pub);
}
- /* Fill the rest of the public keys with random values */
- for (; i<num_pub; i++)
- GNUNET_CRYPTO_random_block (GNUNET_CRYPTO_QUALITY_WEAK,
- &new->pub[i],
- sizeof(new->pub[i]));
-
return GNUNET_OK;
FAIL:
@@ -567,10 +571,24 @@ FAIL:
enum GNUNET_GenericReturnValue
TALER_age_commitment_derive (
const struct TALER_AgeCommitment *orig,
- const uint32_t seed,
+ const uint64_t salt,
struct TALER_AgeCommitment *new)
{
- struct GNUNET_CRYPTO_EccScalar val;
+ struct GNUNET_CRYPTO_EccScalar scalar;
+ uint64_t saltBT = htonl (salt);
+ int64_t factor;
+
+ GNUNET_assert (GNUNET_OK ==
+ GNUNET_CRYPTO_kdf (
+ &factor,
+ sizeof (factor),
+ &saltBT,
+ sizeof (saltBT),
+ "taler-age-restriction-derivation",
+ strlen ("taler-age-restriction-derivation"),
+ NULL, 0));
+
+ GNUNET_CRYPTO_ecc_scalar_from_int (factor, &scalar);
/*
* age commitment consists of GNUNET_CRYPTO_Eddsa{Private,Public}Key
@@ -584,7 +602,7 @@ TALER_age_commitment_derive (
* We want to multiply, both, the Private Key by an integer factor and the
* public key (point on curve) with the equivalent scalar.
*
- * From the seed we will derive
+ * From the salt we will derive
* 1. a scalar to multiply the public keys with
* 2. a factor to multiply the private key with
*
@@ -594,9 +612,9 @@ TALER_age_commitment_derive (
* A point on a curve is GNUNET_CRYPTO_EccPoint which is
* unsigned char v[256 / 8];
*
- * A ECC scaler for use in point multiplications is a
+ * A ECC scalar for use in point multiplications is a
* GNUNET_CRYPTO_EccScalar which is a
- * unsigned car v[256 / 8];
+ * unsigned char v[256 / 8];
* */
GNUNET_assert (NULL != new);
@@ -613,9 +631,6 @@ TALER_age_commitment_derive (
new->num_priv,
struct TALER_AgeCommitmentPrivateKeyP);
-
- GNUNET_CRYPTO_ecc_scalar_from_int (seed, &val);
-
/* scalar multiply the public keys on the curve */
for (size_t i = 0; i < orig->num_pub; i++)
{
@@ -627,7 +642,7 @@ TALER_age_commitment_derive (
if (GNUNET_OK !=
GNUNET_CRYPTO_ecc_pmul_mpi (
p,
- &val,
+ &scalar,
np))
goto FAIL;
@@ -636,47 +651,40 @@ TALER_age_commitment_derive (
/* multiply the private keys */
/* we borough ideas from GNUNET_CRYPTO_ecdsa_private_key_derive */
{
- uint32_t seedBE;
- uint8_t dc[32];
- gcry_mpi_t f, x, d, n;
- gcry_ctx_t ctx;
-
- GNUNET_assert (0==gcry_mpi_ec_new (&ctx,NULL, "Ed25519"));
- n = gcry_mpi_ec_get_mpi ("n", ctx, 1);
-
- /* make the seed big endian */
- seedBE = GNUNET_htonll (seed);
-
- GNUNET_CRYPTO_mpi_scan_unsigned (&f, &seedBE, sizeof(seedBE));
-
for (size_t i = 0; i < orig->num_priv; i++)
{
+ uint8_t dc[32];
+ gcry_mpi_t f, x, d, n;
+ gcry_ctx_t ctx;
+
+ GNUNET_assert (0==gcry_mpi_ec_new (&ctx, NULL, "Ed25519"));
+ n = gcry_mpi_ec_get_mpi ("n", ctx, 1);
+
+ GNUNET_CRYPTO_mpi_scan_unsigned (&f, (unsigned char*) &factor,
+ sizeof(factor));
- /* convert to big endian for libgrypt */
for (size_t j = 0; j < 32; j++)
dc[i] = orig->priv[i].eddsa_priv.d[31 - j];
GNUNET_CRYPTO_mpi_scan_unsigned (&x, dc, sizeof(dc));
d = gcry_mpi_new (256);
gcry_mpi_mulm (d, f, x, n);
- gcry_mpi_release (x);
- gcry_mpi_release (d);
- gcry_mpi_release (n);
- gcry_mpi_release (d);
GNUNET_CRYPTO_mpi_print_unsigned (dc, sizeof(dc), d);
for (size_t j = 0; j <32; j++)
new->priv[i].eddsa_priv.d[j] = dc[31 - 1];
sodium_memzero (dc, sizeof(dc));
+ gcry_mpi_release (d);
+ gcry_mpi_release (x);
+ gcry_mpi_release (n);
+ gcry_mpi_release (f);
+ gcry_ctx_release (ctx);
- /* TODO:
- * make sure that the calculated private key generate the same public
- * keys */
+ /* TODO: add test to make sure that the calculated private key generate
+ * the same public keys */
}
- gcry_mpi_release (f);
- gcry_ctx_release (ctx);
}
return GNUNET_OK;