aboutsummaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authorChristian Grothoff <christian@grothoff.org>2016-08-10 01:01:21 +0200
committerChristian Grothoff <christian@grothoff.org>2016-08-10 01:01:21 +0200
commitcc20319a1abea2a5658f1c6dec0aa297f12af601 (patch)
tree6e2671fe76c28e5ad1c1c9b65d62d383bde84b73 /doc
parentbbeef4560d2653c5ad489b9d4e02b1c9ae3083df (diff)
fix minor issues introduced in last reformulation of refresh
Diffstat (limited to 'doc')
-rw-r--r--doc/paper/taler.tex16
1 files changed, 8 insertions, 8 deletions
diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex
index c4349837c..ec0c81981 100644
--- a/doc/paper/taler.tex
+++ b/doc/paper/taler.tex
@@ -781,9 +781,9 @@ generator of the elliptic curve.
\end{itemize}
We have computed $L_i$ as a Diffie-Hellman shared secret between
the transfer key pair $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$
- and old coin key pair $C' := \left(c_s', C_p'\right)$,
- so that $L_i = H(t^{(i)}_s C'_p)$ too.
- Now the customer applies key derivtion functions $\KDF_?$ to $L_i$ to generate
+ and old coin key pair $C' := \left(c_s', C_p'\right)$;
+ as a result, $L_i = H(t^{(i)}_s C'_p)$ also holds.
+ Now the customer applies key derivation functions $\KDF_?$ to $L_i$ to generate
\begin{itemize}
\item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(L_i))$.
\item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(L_i)$
@@ -795,7 +795,7 @@ generator of the elliptic curve.
The customer saves to disk $\langle C', \vec{t}\rangle$ where
$\vec{t} = \langle t^{(1)}_s, \ldots, t^{(\kappa)}_s \rangle$.
We observe that $t^{(i)}_s$ suffices to regenerate $C^{(i)}$ and $b^{(i)}$
- using the same key derivtion functions.
+ using the same key derivation functions.
% \item
The customer computes $B^{(i)} := B_{b^{(i)}}(\FDH_K(C^{(i)}_p))$
@@ -811,7 +811,7 @@ generator of the elliptic curve.
\item The customer commits $\langle C', S_K(C'_p, \gamma) \rangle$ to disk.
% \item
- Also, the customer computes $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$
+ Also, the customer assembles $\mathfrak{R} := \left(t_s^{(i)}\right)_{i \ne \gamma}$
and sends $S_{C'}(\mathfrak{R})$ to the exchange.
\item \label{step:refresh-ccheck}
The exchange checks whether $\mathfrak{R}$ is consistent with
@@ -820,15 +820,15 @@ generator of the elliptic curve.
\vspace{-2ex}
\begin{minipage}{5cm}
\begin{align*}
- \overline{K}_i :&= H(t_s^{(i)} C_p') \\
- \overline{c}_s^{(i)} :&= \KDF_{\textrm{Ed25519}}(\overline{K}_i) \\
+ \overline{L}_i :&= H(t_s^{(i)} C_p') \\
+ \overline{c}_s^{(i)} :&= \KDF_{\textrm{Ed25519}}(\overline{L}_i) \\
\overline{C^{(i)}_p} :&= \overline{c}_s^{(i)} G
\end{align*}
\end{minipage}
\begin{minipage}{5cm}
\begin{align*}
\overline{T_p^{(i)}} :&= t_s^{(i)} G \\
- \overline{b}^{(i)} :&= \FDH_K(\KDF_{\textrm{blinding}}(\overline{K}_i)) \\
+ \overline{b}^{(i)} :&= \FDH_K(\KDF_{\textrm{blinding}}(\overline{L}_i)) \\
\overline{B^{(i)}} :&= B_{\overline{b_i}}(\overline{C_p^{(i)}})
\end{align*}
\end{minipage}