diff options
author | Jeff Burdges <burdges@gnunet.org> | 2016-08-09 00:35:33 +0200 |
---|---|---|
committer | Jeff Burdges <burdges@gnunet.org> | 2016-08-09 00:35:33 +0200 |
commit | 01557741365d3c571bb6afec7706526c1ccc395f (patch) | |
tree | fd5bfb9a261e937ad03c8e201251904fd505ef0d /doc | |
parent | eb28eaf3208cfb407684d6416dc5dd456935ba16 (diff) |
Notational cleanups
Diffstat (limited to 'doc')
-rw-r--r-- | doc/paper/taler.tex | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/doc/paper/taler.tex b/doc/paper/taler.tex index c7a1b56b7..19dff3192 100644 --- a/doc/paper/taler.tex +++ b/doc/paper/taler.tex @@ -640,7 +640,7 @@ Now the customer carries out the following interaction with the exchange: to request withdrawal of $C$; here, $B_b$ denotes Chaum-style blinding with blinding factor $b$. \item The exchange checks if the same withdrawal request was issued before; - in this case, it sends $S_{K}(B)$ to the customer.% + in this case, it sends $S_K(B)$ to the customer.% \footnote{$S_K$ denotes a Chaum-style blind signature with private key $K_s$.} If this is a fresh withdrawal request, the exchange performs the following transaction: \begin{enumerate} @@ -783,7 +783,7 @@ generator of the elliptic curve. the transfer key pair $T^{(i)} := \left(t^{(i)}_s,T^{(i)}_p\right)$ and old coin key pair $C' := \left(c_s', C_p'\right)$, so that $K_i = H(t^{(i)}_s C'_p)$ too. - Now the customer applies key derivtion functions to $K_i$ to generate + Now the customer applies key derivtion functions $\KDF_?$ to $K_i$ to generate \begin{itemize} \item a blinding factor $b^{(i)} = \FDH_K(\KDF_{\textrm{blinding}}(K_i))$. \item $c_s^{(i)} = \KDF_{\textrm{Ed25519}}(K_i)$ @@ -1243,22 +1243,22 @@ data being committed to disk are represented in between $\langle\rangle$. \item[$t^{(i)}_s$]{private transfer key, a scalar} \item[$T^{(i)}_p$]{public transfer key, point on a curve (same curve must be used for $C_p$)} \item[$T^{(i)}$]{public-private transfer key pair $T^{(i)} := (t^{(i)}_s,T^{(i)}_s)$} - \item[$\vec{T}$]{Vector of $T^{(i)}$} + \item[$\vec{t}$]{Vector of $t^{(i)}_s$} \item[$c_s^{(i)}$]{Secret key corresponding to a fresh coin, scalar on a curve} \item[$C_p^{(i)}$]{Public key corresponding to $c_s^{(i)}$, point on a curve} \item[$C^{(i)}$]{Public-private coin key pair $C^{(i)} := (c_s^{(i)}, C_p^{(i)})$} - \item[$\vec{C}$]{Vector of $C^{(i)}$ (public and private keys)} +% \item[$\vec{C}$]{Vector of $C^{(i)}$ (public and private keys)} \item[$b^{(i)}$]{Blinding factor for RSA-style blind signatures} \item[$\vec{b}$]{Vector of $b^{(i)}$} \item[$B^{(i)}$]{Blinding of $C_p^{(i)}$} \item[$\vec{B}$]{Vector of $B^{(i)}$} \item[$K_i$]{Symmetric encryption key derived from ECDH operation via hashing} - \item[$E_{K_i}()$]{Symmetric encryption using key $K_i$} - \item[$E^{(i)}$]{$i$-th encryption of the private information $(c_s^{(i)}, b_i)$} - \item[$\vec{E}$]{Vector of $E^{(i)}$} +% \item[$E_{K_i}()$]{Symmetric encryption using key $K_i$} +% \item[$E^{(i)}$]{$i$-th encryption of the private information $(c_s^{(i)}, b_i)$} +% \item[$\vec{E}$]{Vector of $E^{(i)}$} \item[$\cal{R}$]{Tuple of revealed vectors in cut-and-choose protocol, where the vectors exclude the selected index $\gamma$} - \item[$\overline{K_i}$]{Encryption keys derived by the verifier from DH} + \item[$\overline{K_i}$]{Link secrets derived by the verifier from DH} \item[$\overline{B^{(i)}}$]{Blinded values derived by the verifier} \item[$\overline{T_p^{(i)}}$]{Public transfer keys derived by the verifier from revealed private keys} \item[$\overline{c_s^{(i)}}$]{Private keys obtained from decryption by the verifier} |