aboutsummaryrefslogtreecommitdiff
path: root/tests/qtest/npcm7xx_rng-test.c
blob: 797f832e53a1fb45a91906741b15ea13006ba71e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*
 * QTest testcase for the Nuvoton NPCM7xx Random Number Generator
 *
 * Copyright 2020 Google LLC
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 * for more details.
 */

#include "qemu/osdep.h"

#include <math.h>

#include "libqtest-single.h"
#include "qemu/bitops.h"
#include "qemu-common.h"

#define RNG_BASE_ADDR   0xf000b000

/* Control and Status Register */
#define RNGCS   0x00
# define DVALID     BIT(1)  /* Data Valid */
# define RNGE       BIT(0)  /* RNG Enable */
/* Data Register */
#define RNGD    0x04
/* Mode Register */
#define RNGMODE 0x08
# define ROSEL_NORMAL   (2) /* RNG only works in this mode */

/* Number of bits to collect for randomness tests. */
#define TEST_INPUT_BITS  (128)

static void dump_buf_if_failed(const uint8_t *buf, size_t size)
{
    if (g_test_failed()) {
        qemu_hexdump(stderr, "", buf, size);
    }
}

static void rng_writeb(unsigned int offset, uint8_t value)
{
    writeb(RNG_BASE_ADDR + offset, value);
}

static uint8_t rng_readb(unsigned int offset)
{
    return readb(RNG_BASE_ADDR + offset);
}

/* Disable RNG and set normal ring oscillator mode. */
static void rng_reset(void)
{
    rng_writeb(RNGCS, 0);
    rng_writeb(RNGMODE, ROSEL_NORMAL);
}

/* Reset RNG and then enable it. */
static void rng_reset_enable(void)
{
    rng_reset();
    rng_writeb(RNGCS, RNGE);
}

/* Wait until Data Valid bit is set. */
static bool rng_wait_ready(void)
{
    /* qemu_guest_getrandom may fail. Assume it won't fail 10 times in a row. */
    int retries = 10;

    while (retries-- > 0) {
        if (rng_readb(RNGCS) & DVALID) {
            return true;
        }
    }

    return false;
}

/*
 * Perform a frequency (monobit) test, as defined by NIST SP 800-22, on the
 * sequence in buf and return the P-value. This represents the probability of a
 * truly random sequence having the same proportion of zeros and ones as the
 * sequence in buf.
 *
 * An RNG which always returns 0x00 or 0xff, or has some bits stuck at 0 or 1,
 * will fail this test. However, an RNG which always returns 0x55, 0xf0 or some
 * other value with an equal number of zeroes and ones will pass.
 */
static double calc_monobit_p(const uint8_t *buf, unsigned int len)
{
    unsigned int i;
    double s_obs;
    int sn = 0;

    for (i = 0; i < len; i++) {
        /*
         * Each 1 counts as 1, each 0 counts as -1.
         * s = cp - (8 - cp) = 2 * cp - 8
         */
        sn += 2 * ctpop8(buf[i]) - 8;
    }

    s_obs = abs(sn) / sqrt(len * BITS_PER_BYTE);

    return erfc(s_obs / sqrt(2));
}

/*
 * Perform a runs test, as defined by NIST SP 800-22, and return the P-value.
 * This represents the probability of a truly random sequence having the same
 * number of runs (i.e. uninterrupted sequences of identical bits) as the
 * sequence in buf.
 */
static double calc_runs_p(const unsigned long *buf, unsigned int nr_bits)
{
    unsigned int j;
    unsigned int k;
    int nr_ones = 0;
    int vn_obs = 0;
    double pi;

    g_assert(nr_bits % BITS_PER_LONG == 0);

    for (j = 0; j < nr_bits / BITS_PER_LONG; j++) {
        nr_ones += __builtin_popcountl(buf[j]);
    }
    pi = (double)nr_ones / nr_bits;

    for (k = 0; k < nr_bits - 1; k++) {
        vn_obs += (test_bit(k, buf) ^ test_bit(k + 1, buf));
    }
    vn_obs += 1;

    return erfc(fabs(vn_obs - 2 * nr_bits * pi * (1.0 - pi))
                / (2 * sqrt(2 * nr_bits) * pi * (1.0 - pi)));
}

/*
 * Verifies that DVALID is clear, and RNGD reads zero, when RNGE is cleared,
 * and DVALID eventually becomes set when RNGE is set.
 */
static void test_enable_disable(void)
{
    /* Disable: DVALID should not be set, and RNGD should read zero */
    rng_reset();
    g_assert_cmphex(rng_readb(RNGCS), ==, 0);
    g_assert_cmphex(rng_readb(RNGD), ==, 0);

    /* Enable: DVALID should be set, but we can't make assumptions about RNGD */
    rng_writeb(RNGCS, RNGE);
    g_assert_true(rng_wait_ready());
    g_assert_cmphex(rng_readb(RNGCS), ==, DVALID | RNGE);

    /* Disable: DVALID should not be set, and RNGD should read zero */
    rng_writeb(RNGCS, 0);
    g_assert_cmphex(rng_readb(RNGCS), ==, 0);
    g_assert_cmphex(rng_readb(RNGD), ==, 0);
}

/*
 * Verifies that the RNG only produces data when RNGMODE is set to 'normal'
 * ring oscillator mode.
 */
static void test_rosel(void)
{
    rng_reset_enable();
    g_assert_true(rng_wait_ready());
    rng_writeb(RNGMODE, 0);
    g_assert_false(rng_wait_ready());
    rng_writeb(RNGMODE, ROSEL_NORMAL);
    g_assert_true(rng_wait_ready());
    rng_writeb(RNGMODE, 0);
    g_assert_false(rng_wait_ready());
}

/*
 * Verifies that a continuous sequence of bits collected after enabling the RNG
 * satisfies a monobit test.
 */
static void test_continuous_monobit(void)
{
    uint8_t buf[TEST_INPUT_BITS / BITS_PER_BYTE];
    unsigned int i;

    rng_reset_enable();
    for (i = 0; i < sizeof(buf); i++) {
        g_assert_true(rng_wait_ready());
        buf[i] = rng_readb(RNGD);
    }

    g_assert_cmpfloat(calc_monobit_p(buf, sizeof(buf)), >, 0.01);
    dump_buf_if_failed(buf, sizeof(buf));
}

/*
 * Verifies that a continuous sequence of bits collected after enabling the RNG
 * satisfies a runs test.
 */
static void test_continuous_runs(void)
{
    union {
        unsigned long l[TEST_INPUT_BITS / BITS_PER_LONG];
        uint8_t c[TEST_INPUT_BITS / BITS_PER_BYTE];
    } buf;
    unsigned int i;

    rng_reset_enable();
    for (i = 0; i < sizeof(buf); i++) {
        g_assert_true(rng_wait_ready());
        buf.c[i] = rng_readb(RNGD);
    }

    g_assert_cmpfloat(calc_runs_p(buf.l, sizeof(buf) * BITS_PER_BYTE), >, 0.01);
    dump_buf_if_failed(buf.c, sizeof(buf));
}

/*
 * Verifies that the first data byte collected after enabling the RNG satisfies
 * a monobit test.
 */
static void test_first_byte_monobit(void)
{
    /* Enable, collect one byte, disable. Repeat until we have 100 bits. */
    uint8_t buf[TEST_INPUT_BITS / BITS_PER_BYTE];
    unsigned int i;

    rng_reset();
    for (i = 0; i < sizeof(buf); i++) {
        rng_writeb(RNGCS, RNGE);
        g_assert_true(rng_wait_ready());
        buf[i] = rng_readb(RNGD);
        rng_writeb(RNGCS, 0);
    }

    g_assert_cmpfloat(calc_monobit_p(buf, sizeof(buf)), >, 0.01);
    dump_buf_if_failed(buf, sizeof(buf));
}

/*
 * Verifies that the first data byte collected after enabling the RNG satisfies
 * a runs test.
 */
static void test_first_byte_runs(void)
{
    /* Enable, collect one byte, disable. Repeat until we have 100 bits. */
    union {
        unsigned long l[TEST_INPUT_BITS / BITS_PER_LONG];
        uint8_t c[TEST_INPUT_BITS / BITS_PER_BYTE];
    } buf;
    unsigned int i;

    rng_reset();
    for (i = 0; i < sizeof(buf); i++) {
        rng_writeb(RNGCS, RNGE);
        g_assert_true(rng_wait_ready());
        buf.c[i] = rng_readb(RNGD);
        rng_writeb(RNGCS, 0);
    }

    g_assert_cmpfloat(calc_runs_p(buf.l, sizeof(buf) * BITS_PER_BYTE), >, 0.01);
    dump_buf_if_failed(buf.c, sizeof(buf));
}

int main(int argc, char **argv)
{
    int ret;

    g_test_init(&argc, &argv, NULL);
    g_test_set_nonfatal_assertions();

    qtest_add_func("npcm7xx_rng/enable_disable", test_enable_disable);
    qtest_add_func("npcm7xx_rng/rosel", test_rosel);
    /*
     * These tests fail intermittently; only run them on explicit
     * request until we figure out why.
     */
    if (getenv("QEMU_TEST_FLAKY_RNG_TESTS")) {
        qtest_add_func("npcm7xx_rng/continuous/monobit", test_continuous_monobit);
        qtest_add_func("npcm7xx_rng/continuous/runs", test_continuous_runs);
        qtest_add_func("npcm7xx_rng/first_byte/monobit", test_first_byte_monobit);
        qtest_add_func("npcm7xx_rng/first_byte/runs", test_first_byte_runs);
    }

    qtest_start("-machine npcm750-evb");
    ret = g_test_run();
    qtest_end();

    return ret;
}