aboutsummaryrefslogtreecommitdiff
path: root/tests/qtest/m48t59-test.c
blob: b94a1230f7fdf742102597f402e2ea894689320b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
 * QTest testcase for the M48T59 and M48T08 real-time clocks
 *
 * Based on MC146818 RTC test:
 * Copyright IBM, Corp. 2012
 *
 * Authors:
 *  Anthony Liguori   <aliguori@us.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"

#include "libqtest.h"

#define RTC_SECONDS             0x9
#define RTC_MINUTES             0xa
#define RTC_HOURS               0xb

#define RTC_DAY_OF_WEEK         0xc
#define RTC_DAY_OF_MONTH        0xd
#define RTC_MONTH               0xe
#define RTC_YEAR                0xf

static uint32_t base;
static uint16_t reg_base = 0x1ff0; /* 0x7f0 for m48t02 */
static int base_year;
static const char *base_machine;
static bool use_mmio;

static uint8_t cmos_read_mmio(QTestState *s, uint8_t reg)
{
    return qtest_readb(s, base + (uint32_t)reg_base + (uint32_t)reg);
}

static void cmos_write_mmio(QTestState *s, uint8_t reg, uint8_t val)
{
    uint8_t data = val;

    qtest_writeb(s, base + (uint32_t)reg_base + (uint32_t)reg, data);
}

static uint8_t cmos_read_ioio(QTestState *s, uint8_t reg)
{
    qtest_outw(s, base + 0, reg_base + (uint16_t)reg);
    return qtest_inb(s, base + 3);
}

static void cmos_write_ioio(QTestState *s, uint8_t reg, uint8_t val)
{
    qtest_outw(s, base + 0, reg_base + (uint16_t)reg);
    qtest_outb(s, base + 3, val);
}

static uint8_t cmos_read(QTestState *s, uint8_t reg)
{
    if (use_mmio) {
        return cmos_read_mmio(s, reg);
    } else {
        return cmos_read_ioio(s, reg);
    }
}

static void cmos_write(QTestState *s, uint8_t reg, uint8_t val)
{
    if (use_mmio) {
        cmos_write_mmio(s, reg, val);
    } else {
        cmos_write_ioio(s, reg, val);
    }
}

static int bcd2dec(int value)
{
    return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
}

static int tm_cmp(struct tm *lhs, struct tm *rhs)
{
    time_t a, b;
    struct tm d1, d2;

    memcpy(&d1, lhs, sizeof(d1));
    memcpy(&d2, rhs, sizeof(d2));

    a = mktime(&d1);
    b = mktime(&d2);

    if (a < b) {
        return -1;
    } else if (a > b) {
        return 1;
    }

    return 0;
}

#if 0
static void print_tm(struct tm *tm)
{
    printf("%04d-%02d-%02d %02d:%02d:%02d %+02ld\n",
           tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
           tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
}
#endif

static void cmos_get_date_time(QTestState *s, struct tm *date)
{
    int sec, min, hour, mday, mon, year;
    time_t ts;
    struct tm dummy;

    sec = cmos_read(s, RTC_SECONDS);
    min = cmos_read(s, RTC_MINUTES);
    hour = cmos_read(s, RTC_HOURS);
    mday = cmos_read(s, RTC_DAY_OF_MONTH);
    mon = cmos_read(s, RTC_MONTH);
    year = cmos_read(s, RTC_YEAR);

    sec = bcd2dec(sec);
    min = bcd2dec(min);
    hour = bcd2dec(hour);
    mday = bcd2dec(mday);
    mon = bcd2dec(mon);
    year = bcd2dec(year);

    ts = time(NULL);
    localtime_r(&ts, &dummy);

    date->tm_isdst = dummy.tm_isdst;
    date->tm_sec = sec;
    date->tm_min = min;
    date->tm_hour = hour;
    date->tm_mday = mday;
    date->tm_mon = mon - 1;
    date->tm_year = base_year + year - 1900;
#ifndef __sun__
    date->tm_gmtoff = 0;
#endif

    ts = mktime(date);
}

static QTestState *m48t59_qtest_start(void)
{
    return qtest_initf("-M %s -rtc clock=vm", base_machine);
}

static void bcd_check_time(void)
{
    struct tm start, date[4], end;
    struct tm *datep;
    time_t ts;
    const int wiggle = 2;
    QTestState *s = m48t59_qtest_start();

    /*
     * This check assumes a few things.  First, we cannot guarantee that we get
     * a consistent reading from the wall clock because we may hit an edge of
     * the clock while reading.  To work around this, we read four clock readings
     * such that at least two of them should match.  We need to assume that one
     * reading is corrupt so we need four readings to ensure that we have at
     * least two consecutive identical readings
     *
     * It's also possible that we'll cross an edge reading the host clock so
     * simply check to make sure that the clock reading is within the period of
     * when we expect it to be.
     */

    ts = time(NULL);
    gmtime_r(&ts, &start);

    cmos_get_date_time(s, &date[0]);
    cmos_get_date_time(s, &date[1]);
    cmos_get_date_time(s, &date[2]);
    cmos_get_date_time(s, &date[3]);

    ts = time(NULL);
    gmtime_r(&ts, &end);

    if (tm_cmp(&date[0], &date[1]) == 0) {
        datep = &date[0];
    } else if (tm_cmp(&date[1], &date[2]) == 0) {
        datep = &date[1];
    } else if (tm_cmp(&date[2], &date[3]) == 0) {
        datep = &date[2];
    } else {
        g_assert_not_reached();
    }

    if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
        long t, s;

        start.tm_isdst = datep->tm_isdst;

        t = (long)mktime(datep);
        s = (long)mktime(&start);
        if (t < s) {
            g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
        } else {
            g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
        }

        g_assert_cmpint(ABS(t - s), <=, wiggle);
    }

    qtest_quit(s);
}

/* success if no crash or abort */
static void fuzz_registers(void)
{
    unsigned int i;
    QTestState *s = m48t59_qtest_start();

    for (i = 0; i < 1000; i++) {
        uint8_t reg, val;

        reg = (uint8_t)g_test_rand_int_range(0, 16);
        val = (uint8_t)g_test_rand_int_range(0, 256);

        if (reg == 7) {
            /* watchdog setup register, may trigger system reset, skip */
            continue;
        }

        cmos_write(s, reg, val);
        cmos_read(s, reg);
    }

    qtest_quit(s);
}

static void base_setup(void)
{
    const char *arch = qtest_get_arch();

    if (g_str_equal(arch, "sparc")) {
        /* Note: For sparc64, we'd need to map-in the PCI bridge memory first */
        base = 0x71200000;
        base_year = 1968;
        base_machine = "SS-5";
        use_mmio = true;
    } else if (g_str_equal(arch, "ppc") || g_str_equal(arch, "ppc64")) {
        base = 0xF0000000;
        base_year = 1968;
        base_machine = "ref405ep";
        use_mmio = true;
    } else {
        g_assert_not_reached();
    }
}

int main(int argc, char **argv)
{
    base_setup();

    g_test_init(&argc, &argv, NULL);

    if (g_test_slow()) {
        /* Do not run this in timing-sensitive environments */
        qtest_add_func("/rtc/bcd-check-time", bcd_check_time);
    }
    qtest_add_func("/rtc/fuzz-registers", fuzz_registers);
    return g_test_run();
}