aboutsummaryrefslogtreecommitdiff
path: root/tests/qtest/fuzz/generic_fuzz.c
blob: ee8c17a04c4032fb026f720bbce2e912221cf793 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*
 * Generic Virtual-Device Fuzzing Target
 *
 * Copyright Red Hat Inc., 2020
 *
 * Authors:
 *  Alexander Bulekov   <alxndr@bu.edu>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"

#include <wordexp.h>

#include "hw/core/cpu.h"
#include "tests/qtest/libqos/libqtest.h"
#include "tests/qtest/libqos/pci-pc.h"
#include "fuzz.h"
#include "fork_fuzz.h"
#include "exec/address-spaces.h"
#include "string.h"
#include "exec/memory.h"
#include "exec/ramblock.h"
#include "exec/address-spaces.h"
#include "hw/qdev-core.h"
#include "hw/pci/pci.h"
#include "hw/boards.h"
#include "generic_fuzz_configs.h"

/*
 * SEPARATOR is used to separate "operations" in the fuzz input
 */
#define SEPARATOR "FUZZ"

enum cmds {
    OP_IN,
    OP_OUT,
    OP_READ,
    OP_WRITE,
    OP_PCI_READ,
    OP_PCI_WRITE,
    OP_DISABLE_PCI,
    OP_ADD_DMA_PATTERN,
    OP_CLEAR_DMA_PATTERNS,
    OP_CLOCK_STEP,
};

#define DEFAULT_TIMEOUT_US 100000
#define USEC_IN_SEC 1000000000

#define MAX_DMA_FILL_SIZE 0x10000

#define PCI_HOST_BRIDGE_CFG 0xcf8
#define PCI_HOST_BRIDGE_DATA 0xcfc

typedef struct {
    ram_addr_t addr;
    ram_addr_t size; /* The number of bytes until the end of the I/O region */
} address_range;

static useconds_t timeout = DEFAULT_TIMEOUT_US;

static bool qtest_log_enabled;

/*
 * A pattern used to populate a DMA region or perform a memwrite. This is
 * useful for e.g. populating tables of unique addresses.
 * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
 * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
 */
typedef struct {
    uint8_t index;      /* Index of a byte to increment by stride */
    uint8_t stride;     /* Increment each index'th byte by this amount */
    size_t len;
    const uint8_t *data;
} pattern;

/* Avoid filling the same DMA region between MMIO/PIO commands ? */
static bool avoid_double_fetches;

static QTestState *qts_global; /* Need a global for the DMA callback */

/*
 * List of memory regions that are children of QOM objects specified by the
 * user for fuzzing.
 */
static GHashTable *fuzzable_memoryregions;
static GPtrArray *fuzzable_pci_devices;

struct get_io_cb_info {
    int index;
    int found;
    address_range result;
};

static int get_io_address_cb(Int128 start, Int128 size,
                          const MemoryRegion *mr, void *opaque) {
    struct get_io_cb_info *info = opaque;
    if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
        if (info->index == 0) {
            info->result.addr = (ram_addr_t)start;
            info->result.size = (ram_addr_t)size;
            info->found = 1;
            return 1;
        }
        info->index--;
    }
    return 0;
}

/*
 * List of dma regions populated since the last fuzzing command. Used to ensure
 * that we only write to each DMA address once, to avoid race conditions when
 * building reproducers.
 */
static GArray *dma_regions;

static GArray *dma_patterns;
static int dma_pattern_index;
static bool pci_disabled;

/*
 * Allocate a block of memory and populate it with a pattern.
 */
static void *pattern_alloc(pattern p, size_t len)
{
    int i;
    uint8_t *buf = g_malloc(len);
    uint8_t sum = 0;

    for (i = 0; i < len; ++i) {
        buf[i] = p.data[i % p.len];
        if ((i % p.len) == p.index) {
            buf[i] += sum;
            sum += p.stride;
        }
    }
    return buf;
}

static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
{
    unsigned access_size_max = mr->ops->valid.max_access_size;

    /*
     * Regions are assumed to support 1-4 byte accesses unless
     * otherwise specified.
     */
    if (access_size_max == 0) {
        access_size_max = 4;
    }

    /* Bound the maximum access by the alignment of the address.  */
    if (!mr->ops->impl.unaligned) {
        unsigned align_size_max = addr & -addr;
        if (align_size_max != 0 && align_size_max < access_size_max) {
            access_size_max = align_size_max;
        }
    }

    /* Don't attempt accesses larger than the maximum.  */
    if (l > access_size_max) {
        l = access_size_max;
    }
    l = pow2floor(l);

    return l;
}

/*
 * Call-back for functions that perform DMA reads from guest memory. Confirm
 * that the region has not already been populated since the last loop in
 * generic_fuzz(), avoiding potential race-conditions, which we don't have
 * a good way for reproducing right now.
 */
void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
{
    /* Are we in the generic-fuzzer or are we using another fuzz-target? */
    if (!qts_global) {
        return;
    }

    /*
     * Return immediately if:
     * - We have no DMA patterns defined
     * - The length of the DMA read request is zero
     * - The DMA read is hitting an MR other than the machine's main RAM
     * - The DMA request hits past the bounds of our RAM
     */
    if (dma_patterns->len == 0
        || len == 0
        || mr != current_machine->ram
        || addr > current_machine->ram_size) {
        return;
    }

    /*
     * If we overlap with any existing dma_regions, split the range and only
     * populate the non-overlapping parts.
     */
    address_range region;
    bool double_fetch = false;
    for (int i = 0;
         i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
         ++i) {
        region = g_array_index(dma_regions, address_range, i);
        if (addr < region.addr + region.size && addr + len > region.addr) {
            double_fetch = true;
            if (addr < region.addr
                && avoid_double_fetches) {
                fuzz_dma_read_cb(addr, region.addr - addr, mr);
            }
            if (addr + len > region.addr + region.size
                && avoid_double_fetches) {
                fuzz_dma_read_cb(region.addr + region.size,
                        addr + len - (region.addr + region.size), mr);
            }
            return;
        }
    }

    /* Cap the length of the DMA access to something reasonable */
    len = MIN(len, MAX_DMA_FILL_SIZE);

    address_range ar = {addr, len};
    g_array_append_val(dma_regions, ar);
    pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
    void *buf_base = pattern_alloc(p, ar.size);
    void *buf = buf_base;
    hwaddr l, addr1;
    MemoryRegion *mr1;
    while (len > 0) {
        l = len;
        mr1 = address_space_translate(first_cpu->as,
                                      addr, &addr1, &l, true,
                                      MEMTXATTRS_UNSPECIFIED);

        if (!(memory_region_is_ram(mr1) ||
              memory_region_is_romd(mr1))) {
            l = memory_access_size(mr1, l, addr1);
        } else {
            /* ROM/RAM case */
            if (qtest_log_enabled) {
                /*
                * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
                * that will be written by qtest.c with a DMA tag, so we can reorder
                * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
                * command.
                */
                fprintf(stderr, "[DMA] ");
                if (double_fetch) {
                    fprintf(stderr, "[DOUBLE-FETCH] ");
                }
                fflush(stderr);
            }
            qtest_memwrite(qts_global, addr, buf, l);
        }
        len -= l;
        buf += l;
        addr += l;

    }
    g_free(buf_base);

    /* Increment the index of the pattern for the next DMA access */
    dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
}

/*
 * Here we want to convert a fuzzer-provided [io-region-index, offset] to
 * a physical address. To do this, we iterate over all of the matched
 * MemoryRegions. Check whether each region exists within the particular io
 * space. Return the absolute address of the offset within the index'th region
 * that is a subregion of the io_space and the distance until the end of the
 * memory region.
 */
static bool get_io_address(address_range *result, AddressSpace *as,
                            uint8_t index,
                            uint32_t offset) {
    FlatView *view;
    view = as->current_map;
    g_assert(view);
    struct get_io_cb_info cb_info = {};

    cb_info.index = index;

    /*
     * Loop around the FlatView until we match "index" number of
     * fuzzable_memoryregions, or until we know that there are no matching
     * memory_regions.
     */
    do {
        flatview_for_each_range(view, get_io_address_cb , &cb_info);
    } while (cb_info.index != index && !cb_info.found);

    *result = cb_info.result;
    if (result->size) {
        offset = offset % result->size;
        result->addr += offset;
        result->size -= offset;
    }
    return cb_info.found;
}

static bool get_pio_address(address_range *result,
                            uint8_t index, uint16_t offset)
{
    /*
     * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
     * can contain an addr that extends past the PIO space. When we pass this
     * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
     * up fuzzing a completely different MemoryRegion/Device. Therefore, check
     * that the address here is within the PIO space limits.
     */
    bool found = get_io_address(result, &address_space_io, index, offset);
    return result->addr <= 0xFFFF ? found : false;
}

static bool get_mmio_address(address_range *result,
                             uint8_t index, uint32_t offset)
{
    return get_io_address(result, &address_space_memory, index, offset);
}

static void op_in(QTestState *s, const unsigned char * data, size_t len)
{
    enum Sizes {Byte, Word, Long, end_sizes};
    struct {
        uint8_t size;
        uint8_t base;
        uint16_t offset;
    } a;
    address_range abs;

    if (len < sizeof(a)) {
        return;
    }
    memcpy(&a, data, sizeof(a));
    if (get_pio_address(&abs, a.base, a.offset) == 0) {
        return;
    }

    switch (a.size %= end_sizes) {
    case Byte:
        qtest_inb(s, abs.addr);
        break;
    case Word:
        if (abs.size >= 2) {
            qtest_inw(s, abs.addr);
        }
        break;
    case Long:
        if (abs.size >= 4) {
            qtest_inl(s, abs.addr);
        }
        break;
    }
}

static void op_out(QTestState *s, const unsigned char * data, size_t len)
{
    enum Sizes {Byte, Word, Long, end_sizes};
    struct {
        uint8_t size;
        uint8_t base;
        uint16_t offset;
        uint32_t value;
    } a;
    address_range abs;

    if (len < sizeof(a)) {
        return;
    }
    memcpy(&a, data, sizeof(a));

    if (get_pio_address(&abs, a.base, a.offset) == 0) {
        return;
    }

    switch (a.size %= end_sizes) {
    case Byte:
        qtest_outb(s, abs.addr, a.value & 0xFF);
        break;
    case Word:
        if (abs.size >= 2) {
            qtest_outw(s, abs.addr, a.value & 0xFFFF);
        }
        break;
    case Long:
        if (abs.size >= 4) {
            qtest_outl(s, abs.addr, a.value);
        }
        break;
    }
}

static void op_read(QTestState *s, const unsigned char * data, size_t len)
{
    enum Sizes {Byte, Word, Long, Quad, end_sizes};
    struct {
        uint8_t size;
        uint8_t base;
        uint32_t offset;
    } a;
    address_range abs;

    if (len < sizeof(a)) {
        return;
    }
    memcpy(&a, data, sizeof(a));

    if (get_mmio_address(&abs, a.base, a.offset) == 0) {
        return;
    }

    switch (a.size %= end_sizes) {
    case Byte:
        qtest_readb(s, abs.addr);
        break;
    case Word:
        if (abs.size >= 2) {
            qtest_readw(s, abs.addr);
        }
        break;
    case Long:
        if (abs.size >= 4) {
            qtest_readl(s, abs.addr);
        }
        break;
    case Quad:
        if (abs.size >= 8) {
            qtest_readq(s, abs.addr);
        }
        break;
    }
}

static void op_write(QTestState *s, const unsigned char * data, size_t len)
{
    enum Sizes {Byte, Word, Long, Quad, end_sizes};
    struct {
        uint8_t size;
        uint8_t base;
        uint32_t offset;
        uint64_t value;
    } a;
    address_range abs;

    if (len < sizeof(a)) {
        return;
    }
    memcpy(&a, data, sizeof(a));

    if (get_mmio_address(&abs, a.base, a.offset) == 0) {
        return;
    }

    switch (a.size %= end_sizes) {
    case Byte:
            qtest_writeb(s, abs.addr, a.value & 0xFF);
        break;
    case Word:
        if (abs.size >= 2) {
            qtest_writew(s, abs.addr, a.value & 0xFFFF);
        }
        break;
    case Long:
        if (abs.size >= 4) {
            qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
        }
        break;
    case Quad:
        if (abs.size >= 8) {
            qtest_writeq(s, abs.addr, a.value);
        }
        break;
    }
}

static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
{
    enum Sizes {Byte, Word, Long, end_sizes};
    struct {
        uint8_t size;
        uint8_t base;
        uint8_t offset;
    } a;
    if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
        return;
    }
    memcpy(&a, data, sizeof(a));
    PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
                                  a.base % fuzzable_pci_devices->len);
    int devfn = dev->devfn;
    qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
    switch (a.size %= end_sizes) {
    case Byte:
        qtest_inb(s, PCI_HOST_BRIDGE_DATA);
        break;
    case Word:
        qtest_inw(s, PCI_HOST_BRIDGE_DATA);
        break;
    case Long:
        qtest_inl(s, PCI_HOST_BRIDGE_DATA);
        break;
    }
}

static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
{
    enum Sizes {Byte, Word, Long, end_sizes};
    struct {
        uint8_t size;
        uint8_t base;
        uint8_t offset;
        uint32_t value;
    } a;
    if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
        return;
    }
    memcpy(&a, data, sizeof(a));
    PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
                                  a.base % fuzzable_pci_devices->len);
    int devfn = dev->devfn;
    qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
    switch (a.size %= end_sizes) {
    case Byte:
        qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
        break;
    case Word:
        qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
        break;
    case Long:
        qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
        break;
    }
}

static void op_add_dma_pattern(QTestState *s,
                               const unsigned char *data, size_t len)
{
    struct {
        /*
         * index and stride can be used to increment the index-th byte of the
         * pattern by the value stride, for each loop of the pattern.
         */
        uint8_t index;
        uint8_t stride;
    } a;

    if (len < sizeof(a) + 1) {
        return;
    }
    memcpy(&a, data, sizeof(a));
    pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
    p.index = a.index % p.len;
    g_array_append_val(dma_patterns, p);
    return;
}

static void op_clear_dma_patterns(QTestState *s,
                                  const unsigned char *data, size_t len)
{
    g_array_set_size(dma_patterns, 0);
    dma_pattern_index = 0;
}

static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
{
    qtest_clock_step_next(s);
}

static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
{
    pci_disabled = true;
}

static void handle_timeout(int sig)
{
    if (qtest_log_enabled) {
        fprintf(stderr, "[Timeout]\n");
        fflush(stderr);
    }
    _Exit(0);
}

/*
 * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
 * Some commands can be variable-width, so we use a separator, SEPARATOR, to
 * specify the boundaries between commands. SEPARATOR is used to separate
 * "operations" in the fuzz input. Why use a separator, instead of just using
 * the operations' length to identify operation boundaries?
 *   1. This is a simple way to support variable-length operations
 *   2. This adds "stability" to the input.
 *      For example take the input "AbBcgDefg", where there is no separator and
 *      Opcodes are capitalized.
 *      Simply, by removing the first byte, we end up with a very different
 *      sequence:
 *      BbcGdefg...
 *      By adding a separator, we avoid this problem:
 *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
 *      Since B uses two additional bytes as operands, the first "B" will be
 *      ignored. The fuzzer actively tries to reduce inputs, so such unused
 *      bytes are likely to be pruned, eventually.
 *
 *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
 *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
 *  -dict), though this should not be necessary.
 *
 * As a result, the stream of bytes is converted into a sequence of commands.
 * In a simplified example where SEPARATOR is 0xFF:
 * 00 01 02 FF 03 04 05 06 FF 01 FF ...
 * becomes this sequence of commands:
 * 00 01 02    -> op00 (0102)   -> in (0102, 2)
 * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
 * 01          -> op01 (-,0)    -> out (-,0)
 * ...
 *
 * Note here that it is the job of the individual opcode functions to check
 * that enough data was provided. I.e. in the last command out (,0), out needs
 * to check that there is not enough data provided to select an address/value
 * for the operation.
 */
static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
{
    void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
        [OP_IN]                 = op_in,
        [OP_OUT]                = op_out,
        [OP_READ]               = op_read,
        [OP_WRITE]              = op_write,
        [OP_PCI_READ]           = op_pci_read,
        [OP_PCI_WRITE]          = op_pci_write,
        [OP_DISABLE_PCI]        = op_disable_pci,
        [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
        [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
        [OP_CLOCK_STEP]         = op_clock_step,
    };
    const unsigned char *cmd = Data;
    const unsigned char *nextcmd;
    size_t cmd_len;
    uint8_t op;

    if (fork() == 0) {
        /*
         * Sometimes the fuzzer will find inputs that take quite a long time to
         * process. Often times, these inputs do not result in new coverage.
         * Even if these inputs might be interesting, they can slow down the
         * fuzzer, overall. Set a timeout to avoid hurting performance, too much
         */
        if (timeout) {
            struct sigaction sact;
            struct itimerval timer;

            sigemptyset(&sact.sa_mask);
            sact.sa_flags   = SA_NODEFER;
            sact.sa_handler = handle_timeout;
            sigaction(SIGALRM, &sact, NULL);

            memset(&timer, 0, sizeof(timer));
            timer.it_value.tv_sec = timeout / USEC_IN_SEC;
            timer.it_value.tv_usec = timeout % USEC_IN_SEC;
            setitimer(ITIMER_VIRTUAL, &timer, NULL);
        }

        op_clear_dma_patterns(s, NULL, 0);
        pci_disabled = false;

        while (cmd && Size) {
            /* Get the length until the next command or end of input */
            nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
            cmd_len = nextcmd ? nextcmd - cmd : Size;

            if (cmd_len > 0) {
                /* Interpret the first byte of the command as an opcode */
                op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
                ops[op](s, cmd + 1, cmd_len - 1);

                /* Run the main loop */
                flush_events(s);
            }
            /* Advance to the next command */
            cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
            Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
            g_array_set_size(dma_regions, 0);
        }
        _Exit(0);
    } else {
        flush_events(s);
        wait(0);
    }
}

static void usage(void)
{
    printf("Please specify the following environment variables:\n");
    printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
    printf("QEMU_FUZZ_OBJECTS= "
            "a space separated list of QOM type names for objects to fuzz\n");
    printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
            "Try to avoid racy DMA double fetch bugs? %d by default\n",
            avoid_double_fetches);
    printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
            "0 to disable. %d by default\n", timeout);
    exit(0);
}

static int locate_fuzz_memory_regions(Object *child, void *opaque)
{
    const char *name;
    MemoryRegion *mr;
    if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
        mr = MEMORY_REGION(child);
        if ((memory_region_is_ram(mr) ||
            memory_region_is_ram_device(mr) ||
            memory_region_is_rom(mr)) == false) {
            name = object_get_canonical_path_component(child);
            /*
             * We don't want duplicate pointers to the same MemoryRegion, so
             * try to remove copies of the pointer, before adding it.
             */
            g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
        }
    }
    return 0;
}

static int locate_fuzz_objects(Object *child, void *opaque)
{
    char *pattern = opaque;
    if (g_pattern_match_simple(pattern, object_get_typename(child))) {
        /* Find and save ptrs to any child MemoryRegions */
        object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);

        /*
         * We matched an object. If its a PCI device, store a pointer to it so
         * we can map BARs and fuzz its config space.
         */
        if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
            /*
             * Don't want duplicate pointers to the same PCIDevice, so remove
             * copies of the pointer, before adding it.
             */
            g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
            g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
        }
    } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
        if (g_pattern_match_simple(pattern,
            object_get_canonical_path_component(child))) {
            MemoryRegion *mr;
            mr = MEMORY_REGION(child);
            if ((memory_region_is_ram(mr) ||
                 memory_region_is_ram_device(mr) ||
                 memory_region_is_rom(mr)) == false) {
                g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
            }
        }
    }
    return 0;
}


static void pci_enum(gpointer pcidev, gpointer bus)
{
    PCIDevice *dev = pcidev;
    QPCIDevice *qdev;
    int i;

    qdev = qpci_device_find(bus, dev->devfn);
    g_assert(qdev != NULL);
    for (i = 0; i < 6; i++) {
        if (dev->io_regions[i].size) {
            qpci_iomap(qdev, i, NULL);
        }
    }
    qpci_device_enable(qdev);
    g_free(qdev);
}

static void generic_pre_fuzz(QTestState *s)
{
    GHashTableIter iter;
    MemoryRegion *mr;
    QPCIBus *pcibus;
    char **result;

    if (!getenv("QEMU_FUZZ_OBJECTS")) {
        usage();
    }
    if (getenv("QTEST_LOG")) {
        qtest_log_enabled = 1;
    }
    if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
        avoid_double_fetches = 1;
    }
    if (getenv("QEMU_FUZZ_TIMEOUT")) {
        timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
    }
    qts_global = s;

    dma_regions = g_array_new(false, false, sizeof(address_range));
    dma_patterns = g_array_new(false, false, sizeof(pattern));

    fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
    fuzzable_pci_devices   = g_ptr_array_new();

    result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
    for (int i = 0; result[i] != NULL; i++) {
        printf("Matching objects by name %s\n", result[i]);
        object_child_foreach_recursive(qdev_get_machine(),
                                    locate_fuzz_objects,
                                    result[i]);
    }
    g_strfreev(result);
    printf("This process will try to fuzz the following MemoryRegions:\n");

    g_hash_table_iter_init(&iter, fuzzable_memoryregions);
    while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
        printf("  * %s (size %lx)\n",
               object_get_canonical_path_component(&(mr->parent_obj)),
               (uint64_t)mr->size);
    }

    if (!g_hash_table_size(fuzzable_memoryregions)) {
        printf("No fuzzable memory regions found...\n");
        exit(1);
    }

    pcibus = qpci_new_pc(s, NULL);
    g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
    qpci_free_pc(pcibus);

    counter_shm_init();
}

/*
 * When libfuzzer gives us two inputs to combine, return a new input with the
 * following structure:
 *
 * Input 1 (data1)
 * SEPARATOR
 * Clear out the DMA Patterns
 * SEPARATOR
 * Disable the pci_read/write instructions
 * SEPARATOR
 * Input 2 (data2)
 *
 * The idea is to collate the core behaviors of the two inputs.
 * For example:
 * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
 *          device functionality A
 * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
 *          functionality B
 *
 * This function attempts to produce an input that:
 * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
 *          functionality A device, replaces the DMA patterns with a single
 *          patten, and triggers device functionality B.
 */
static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
                                     uint8_t *data2, size_t size2, uint8_t *out,
                                     size_t max_out_size, unsigned int seed)
{
    size_t copy_len = 0, size = 0;

    /* Check that we have enough space for data1 and at least part of data2 */
    if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
        return 0;
    }

    /* Copy_Len in the first input */
    copy_len = size1;
    memcpy(out + size, data1, copy_len);
    size += copy_len;
    max_out_size -= copy_len;

    /* Append a separator */
    copy_len = strlen(SEPARATOR);
    memcpy(out + size, SEPARATOR, copy_len);
    size += copy_len;
    max_out_size -= copy_len;

    /* Clear out the DMA Patterns */
    copy_len = 1;
    if (copy_len) {
        out[size] = OP_CLEAR_DMA_PATTERNS;
    }
    size += copy_len;
    max_out_size -= copy_len;

    /* Append a separator */
    copy_len = strlen(SEPARATOR);
    memcpy(out + size, SEPARATOR, copy_len);
    size += copy_len;
    max_out_size -= copy_len;

    /* Disable PCI ops. Assume data1 took care of setting up PCI */
    copy_len = 1;
    if (copy_len) {
        out[size] = OP_DISABLE_PCI;
    }
    size += copy_len;
    max_out_size -= copy_len;

    /* Append a separator */
    copy_len = strlen(SEPARATOR);
    memcpy(out + size, SEPARATOR, copy_len);
    size += copy_len;
    max_out_size -= copy_len;

    /* Copy_Len over the second input */
    copy_len = MIN(size2, max_out_size);
    memcpy(out + size, data2, copy_len);
    size += copy_len;
    max_out_size -= copy_len;

    return  size;
}


static GString *generic_fuzz_cmdline(FuzzTarget *t)
{
    GString *cmd_line = g_string_new(TARGET_NAME);
    if (!getenv("QEMU_FUZZ_ARGS")) {
        usage();
    }
    g_string_append_printf(cmd_line, " -display none \
                                      -machine accel=qtest, \
                                      -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
    return cmd_line;
}

static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
{
    gchar *args;
    const generic_fuzz_config *config;
    g_assert(t->opaque);

    config = t->opaque;
    setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
    if (config->argfunc) {
        args = config->argfunc();
        setenv("QEMU_FUZZ_ARGS", args, 1);
        g_free(args);
    } else {
        g_assert_nonnull(config->args);
        setenv("QEMU_FUZZ_ARGS", config->args, 1);
    }
    setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
    return generic_fuzz_cmdline(t);
}

static void register_generic_fuzz_targets(void)
{
    fuzz_add_target(&(FuzzTarget){
            .name = "generic-fuzz",
            .description = "Fuzz based on any qemu command-line args. ",
            .get_init_cmdline = generic_fuzz_cmdline,
            .pre_fuzz = generic_pre_fuzz,
            .fuzz = generic_fuzz,
            .crossover = generic_fuzz_crossover
    });

    GString *name;
    const generic_fuzz_config *config;

    for (int i = 0;
         i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
         i++) {
        config = predefined_configs + i;
        name = g_string_new("generic-fuzz");
        g_string_append_printf(name, "-%s", config->name);
        fuzz_add_target(&(FuzzTarget){
                .name = name->str,
                .description = "Predefined generic-fuzz config.",
                .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
                .pre_fuzz = generic_pre_fuzz,
                .fuzz = generic_fuzz,
                .crossover = generic_fuzz_crossover,
                .opaque = (void *)config
        });
    }
}

fuzz_target_init(register_generic_fuzz_targets);