aboutsummaryrefslogtreecommitdiff
path: root/tests/image-fuzzer/qcow2/layout.py
blob: a0fd53c7ad3fbac61e17b3c523f3d2912f66f980 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# Generator of fuzzed qcow2 images
#
# Copyright (C) 2014 Maria Kustova <maria.k@catit.be>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

from __future__ import absolute_import
import random
import struct
from . import fuzz
from math import ceil
from os import urandom
from itertools import chain

MAX_IMAGE_SIZE = 10 * (1 << 20)
# Standard sizes
UINT32_S = 4
UINT64_S = 8


class Field(object):

    """Atomic image element (field).

    The class represents an image field as quadruple of a data format
    of value necessary for its packing to binary form, an offset from
    the beginning of the image, a value and a name.

    The field can be iterated as a list [format, offset, value, name].
    """

    __slots__ = ('fmt', 'offset', 'value', 'name')

    def __init__(self, fmt, offset, val, name):
        self.fmt = fmt
        self.offset = offset
        self.value = val
        self.name = name

    def __iter__(self):
        return iter([self.fmt, self.offset, self.value, self.name])

    def __repr__(self):
        return "Field(fmt=%r, offset=%r, value=%r, name=%r)" % \
            (self.fmt, self.offset, self.value, self.name)


class FieldsList(object):

    """List of fields.

    The class allows access to a field in the list by its name.
    """

    def __init__(self, meta_data=None):
        if meta_data is None:
            self.data = []
        else:
            self.data = [Field(*f)
                         for f in meta_data]

    def __getitem__(self, name):
        return [x for x in self.data if x.name == name]

    def __iter__(self):
        return iter(self.data)

    def __len__(self):
        return len(self.data)


class Image(object):

    """ Qcow2 image object.

    This class allows to create qcow2 images with random valid structures and
    values, fuzz them via external qcow2.fuzz module and write the result to
    a file.
    """

    def __init__(self, backing_file_name=None):
        """Create a random valid qcow2 image with the correct header and stored
        backing file name.
        """
        cluster_bits, self.image_size = self._size_params()
        self.cluster_size = 1 << cluster_bits
        self.header = FieldsList()
        self.backing_file_name = FieldsList()
        self.backing_file_format = FieldsList()
        self.feature_name_table = FieldsList()
        self.end_of_extension_area = FieldsList()
        self.l2_tables = FieldsList()
        self.l1_table = FieldsList()
        self.refcount_table = FieldsList()
        self.refcount_blocks = FieldsList()
        self.ext_offset = 0
        self.create_header(cluster_bits, backing_file_name)
        self.set_backing_file_name(backing_file_name)
        self.data_clusters = self._alloc_data(self.image_size,
                                              self.cluster_size)
        # Percentage of fields will be fuzzed
        self.bias = random.uniform(0.2, 0.5)

    def __iter__(self):
        return chain(self.header, self.backing_file_format,
                     self.feature_name_table, self.end_of_extension_area,
                     self.backing_file_name, self.l1_table, self.l2_tables,
                     self.refcount_table, self.refcount_blocks)

    def create_header(self, cluster_bits, backing_file_name=None):
        """Generate a random valid header."""
        meta_header = [
            ['>4s', 0, b"QFI\xfb", 'magic'],
            ['>I', 4, random.randint(2, 3), 'version'],
            ['>Q', 8, 0, 'backing_file_offset'],
            ['>I', 16, 0, 'backing_file_size'],
            ['>I', 20, cluster_bits, 'cluster_bits'],
            ['>Q', 24, self.image_size, 'size'],
            ['>I', 32, 0, 'crypt_method'],
            ['>I', 36, 0, 'l1_size'],
            ['>Q', 40, 0, 'l1_table_offset'],
            ['>Q', 48, 0, 'refcount_table_offset'],
            ['>I', 56, 0, 'refcount_table_clusters'],
            ['>I', 60, 0, 'nb_snapshots'],
            ['>Q', 64, 0, 'snapshots_offset'],
            ['>Q', 72, 0, 'incompatible_features'],
            ['>Q', 80, 0, 'compatible_features'],
            ['>Q', 88, 0, 'autoclear_features'],
            # Only refcount_order = 4 is supported by current (07.2014)
            # implementation of QEMU
            ['>I', 96, 4, 'refcount_order'],
            ['>I', 100, 0, 'header_length']
        ]
        self.header = FieldsList(meta_header)

        if self.header['version'][0].value == 2:
            self.header['header_length'][0].value = 72
        else:
            self.header['incompatible_features'][0].value = \
                                                        random.getrandbits(2)
            self.header['compatible_features'][0].value = random.getrandbits(1)
            self.header['header_length'][0].value = 104
        # Extensions start at the header last field offset and the field size
        self.ext_offset = struct.calcsize(
            self.header['header_length'][0].fmt) + \
            self.header['header_length'][0].offset
        end_of_extension_area_len = 2 * UINT32_S
        free_space = self.cluster_size - self.ext_offset - \
                     end_of_extension_area_len
        # If the backing file name specified and there is enough space for it
        # in the first cluster, then it's placed in the very end of the first
        # cluster.
        if (backing_file_name is not None) and \
           (free_space >= len(backing_file_name)):
            self.header['backing_file_size'][0].value = len(backing_file_name)
            self.header['backing_file_offset'][0].value = \
                                    self.cluster_size - len(backing_file_name)

    def set_backing_file_name(self, backing_file_name=None):
        """Add the name of the backing file at the offset specified
        in the header.
        """
        if (backing_file_name is not None) and \
           (not self.header['backing_file_offset'][0].value == 0):
            data_len = len(backing_file_name)
            data_fmt = '>' + str(data_len) + 's'
            self.backing_file_name = FieldsList([
                [data_fmt, self.header['backing_file_offset'][0].value,
                 backing_file_name, 'bf_name']
            ])

    def set_backing_file_format(self, backing_file_fmt=None):
        """Generate the header extension for the backing file format."""
        if backing_file_fmt is not None:
            # Calculation of the free space available in the first cluster
            end_of_extension_area_len = 2 * UINT32_S
            high_border = (self.header['backing_file_offset'][0].value or
                           (self.cluster_size - 1)) - \
                end_of_extension_area_len
            free_space = high_border - self.ext_offset
            ext_size = 2 * UINT32_S + ((len(backing_file_fmt) + 7) & ~7)

            if free_space >= ext_size:
                ext_data_len = len(backing_file_fmt)
                ext_data_fmt = '>' + str(ext_data_len) + 's'
                ext_padding_len = 7 - (ext_data_len - 1) % 8
                self.backing_file_format = FieldsList([
                    ['>I', self.ext_offset, 0xE2792ACA, 'ext_magic'],
                    ['>I', self.ext_offset + UINT32_S, ext_data_len,
                     'ext_length'],
                    [ext_data_fmt, self.ext_offset + UINT32_S * 2,
                     backing_file_fmt, 'bf_format']
                ])
                self.ext_offset = \
                        struct.calcsize(
                            self.backing_file_format['bf_format'][0].fmt) + \
                        ext_padding_len + \
                        self.backing_file_format['bf_format'][0].offset

    def create_feature_name_table(self):
        """Generate a random header extension for names of features used in
        the image.
        """
        def gen_feat_ids():
            """Return random feature type and feature bit."""
            return (random.randint(0, 2), random.randint(0, 63))

        end_of_extension_area_len = 2 * UINT32_S
        high_border = (self.header['backing_file_offset'][0].value or
                       (self.cluster_size - 1)) - \
            end_of_extension_area_len
        free_space = high_border - self.ext_offset
        # Sum of sizes of 'magic' and 'length' header extension fields
        ext_header_len = 2 * UINT32_S
        fnt_entry_size = 6 * UINT64_S
        num_fnt_entries = min(10, (free_space - ext_header_len) /
                              fnt_entry_size)
        if not num_fnt_entries == 0:
            feature_tables = []
            feature_ids = []
            inner_offset = self.ext_offset + ext_header_len
            feat_name = b'some cool feature'
            while len(feature_tables) < num_fnt_entries * 3:
                feat_type, feat_bit = gen_feat_ids()
                # Remove duplicates
                while (feat_type, feat_bit) in feature_ids:
                    feat_type, feat_bit = gen_feat_ids()
                feature_ids.append((feat_type, feat_bit))
                feat_fmt = '>' + str(len(feat_name)) + 's'
                feature_tables += [['B', inner_offset,
                                    feat_type, 'feature_type'],
                                   ['B', inner_offset + 1, feat_bit,
                                    'feature_bit_number'],
                                   [feat_fmt, inner_offset + 2,
                                    feat_name, 'feature_name']
                ]
                inner_offset += fnt_entry_size
            # No padding for the extension is necessary, because
            # the extension length is multiple of 8
            self.feature_name_table = FieldsList([
                ['>I', self.ext_offset, 0x6803f857, 'ext_magic'],
                # One feature table contains 3 fields and takes 48 bytes
                ['>I', self.ext_offset + UINT32_S,
                 len(feature_tables) // 3 * 48, 'ext_length']
            ] + feature_tables)
            self.ext_offset = inner_offset

    def set_end_of_extension_area(self):
        """Generate a mandatory header extension marking end of header
        extensions.
        """
        self.end_of_extension_area = FieldsList([
            ['>I', self.ext_offset, 0, 'ext_magic'],
            ['>I', self.ext_offset + UINT32_S, 0, 'ext_length']
        ])

    def create_l_structures(self):
        """Generate random valid L1 and L2 tables."""
        def create_l2_entry(host, guest, l2_cluster):
            """Generate one L2 entry."""
            offset = l2_cluster * self.cluster_size
            l2_size = self.cluster_size // UINT64_S
            entry_offset = offset + UINT64_S * (guest % l2_size)
            cluster_descriptor = host * self.cluster_size
            if not self.header['version'][0].value == 2:
                cluster_descriptor += random.randint(0, 1)
            # While snapshots are not supported, bit #63 = 1
            # Compressed clusters are not supported => bit #62 = 0
            entry_val = (1 << 63) + cluster_descriptor
            return ['>Q', entry_offset, entry_val, 'l2_entry']

        def create_l1_entry(l2_cluster, l1_offset, guest):
            """Generate one L1 entry."""
            l2_size = self.cluster_size // UINT64_S
            entry_offset = l1_offset + UINT64_S * (guest // l2_size)
            # While snapshots are not supported bit #63 = 1
            entry_val = (1 << 63) + l2_cluster * self.cluster_size
            return ['>Q', entry_offset, entry_val, 'l1_entry']

        if len(self.data_clusters) == 0:
            # All metadata for an empty guest image needs 4 clusters:
            # header, rfc table, rfc block, L1 table.
            # Header takes cluster #0, other clusters ##1-3 can be used
            l1_offset = random.randint(1, 3) * self.cluster_size
            l1 = [['>Q', l1_offset, 0, 'l1_entry']]
            l2 = []
        else:
            meta_data = self._get_metadata()
            guest_clusters = random.sample(range(self.image_size //
                                                 self.cluster_size),
                                           len(self.data_clusters))
            # Number of entries in a L1/L2 table
            l_size = self.cluster_size // UINT64_S
            # Number of clusters necessary for L1 table
            l1_size = int(ceil((max(guest_clusters) + 1) / float(l_size**2)))
            l1_start = self._get_adjacent_clusters(self.data_clusters |
                                                   meta_data, l1_size)
            meta_data |= set(range(l1_start, l1_start + l1_size))
            l1_offset = l1_start * self.cluster_size
            # Indices of L2 tables
            l2_ids = []
            # Host clusters allocated for L2 tables
            l2_clusters = []
            # L1 entries
            l1 = []
            # L2 entries
            l2 = []
            for host, guest in zip(self.data_clusters, guest_clusters):
                l2_id = guest // l_size
                if l2_id not in l2_ids:
                    l2_ids.append(l2_id)
                    l2_clusters.append(self._get_adjacent_clusters(
                        self.data_clusters | meta_data | set(l2_clusters),
                        1))
                    l1.append(create_l1_entry(l2_clusters[-1], l1_offset,
                                              guest))
                l2.append(create_l2_entry(host, guest,
                                          l2_clusters[l2_ids.index(l2_id)]))
        self.l2_tables = FieldsList(l2)
        self.l1_table = FieldsList(l1)
        self.header['l1_size'][0].value = int(ceil(UINT64_S * self.image_size /
                                                float(self.cluster_size**2)))
        self.header['l1_table_offset'][0].value = l1_offset

    def create_refcount_structures(self):
        """Generate random refcount blocks and refcount table."""
        def allocate_rfc_blocks(data, size):
            """Return indices of clusters allocated for refcount blocks."""
            cluster_ids = set()
            diff = block_ids = set([x // size for x in data])
            while len(diff) != 0:
                # Allocate all yet not allocated clusters
                new = self._get_available_clusters(data | cluster_ids,
                                                   len(diff))
                # Indices of new refcount blocks necessary to cover clusters
                # in 'new'
                diff = set([x // size for x in new]) - block_ids
                cluster_ids |= new
                block_ids |= diff
            return cluster_ids, block_ids

        def allocate_rfc_table(data, init_blocks, block_size):
            """Return indices of clusters allocated for the refcount table
            and updated indices of clusters allocated for blocks and indices
            of blocks.
            """
            blocks = set(init_blocks)
            clusters = set()
            # Number of entries in one cluster of the refcount table
            size = self.cluster_size // UINT64_S
            # Number of clusters necessary for the refcount table based on
            # the current number of refcount blocks
            table_size = int(ceil((max(blocks) + 1) / float(size)))
            # Index of the first cluster of the refcount table
            table_start = self._get_adjacent_clusters(data, table_size + 1)
            # Clusters allocated for the current length of the refcount table
            table_clusters = set(range(table_start, table_start + table_size))
            # Clusters allocated for the refcount table including
            # last optional one for potential l1 growth
            table_clusters_allocated = set(range(table_start, table_start +
                                                 table_size + 1))
            # New refcount blocks necessary for clusters occupied by the
            # refcount table
            diff = set([c // block_size for c in table_clusters]) - blocks
            blocks |= diff
            while len(diff) != 0:
                # Allocate clusters for new refcount blocks
                new = self._get_available_clusters((data | clusters) |
                                                   table_clusters_allocated,
                                                   len(diff))
                # Indices of new refcount blocks necessary to cover
                # clusters in 'new'
                diff = set([x // block_size for x in new]) - blocks
                clusters |= new
                blocks |= diff
                # Check if the refcount table needs one more cluster
                if int(ceil((max(blocks) + 1) / float(size))) > table_size:
                    new_block_id = (table_start + table_size) // block_size
                    # Check if the additional table cluster needs
                    # one more refcount block
                    if new_block_id not in blocks:
                        diff.add(new_block_id)
                    table_clusters.add(table_start + table_size)
                    table_size += 1
            return table_clusters, blocks, clusters

        def create_table_entry(table_offset, block_cluster, block_size,
                               cluster):
            """Generate a refcount table entry."""
            offset = table_offset + UINT64_S * (cluster // block_size)
            return ['>Q', offset, block_cluster * self.cluster_size,
                    'refcount_table_entry']

        def create_block_entry(block_cluster, block_size, cluster):
            """Generate a list of entries for the current block."""
            entry_size = self.cluster_size // block_size
            offset = block_cluster * self.cluster_size
            entry_offset = offset + entry_size * (cluster % block_size)
            # While snapshots are not supported all refcounts are set to 1
            return ['>H', entry_offset, 1, 'refcount_block_entry']
        # Size of a block entry in bits
        refcount_bits = 1 << self.header['refcount_order'][0].value
        # Number of refcount entries per refcount block
        # Convert self.cluster_size from bytes to bits to have the same
        # base for the numerator and denominator
        block_size = self.cluster_size * 8 // refcount_bits
        meta_data = self._get_metadata()
        if len(self.data_clusters) == 0:
            # All metadata for an empty guest image needs 4 clusters:
            # header, rfc table, rfc block, L1 table.
            # Header takes cluster #0, other clusters ##1-3 can be used
            block_clusters = set([random.choice(list(set(range(1, 4)) -
                                                     meta_data))])
            block_ids = set([0])
            table_clusters = set([random.choice(list(set(range(1, 4)) -
                                                     meta_data -
                                                     block_clusters))])
        else:
            block_clusters, block_ids = \
                                allocate_rfc_blocks(self.data_clusters |
                                                    meta_data, block_size)
            table_clusters, block_ids, new_clusters = \
                                    allocate_rfc_table(self.data_clusters |
                                                       meta_data |
                                                       block_clusters,
                                                       block_ids,
                                                       block_size)
            block_clusters |= new_clusters

        meta_data |= block_clusters | table_clusters
        table_offset = min(table_clusters) * self.cluster_size
        block_id = None
        # Clusters allocated for refcount blocks
        block_clusters = list(block_clusters)
        # Indices of refcount blocks
        block_ids = list(block_ids)
        # Refcount table entries
        rfc_table = []
        # Refcount entries
        rfc_blocks = []

        for cluster in sorted(self.data_clusters | meta_data):
            if cluster // block_size != block_id:
                block_id = cluster // block_size
                block_cluster = block_clusters[block_ids.index(block_id)]
                rfc_table.append(create_table_entry(table_offset,
                                                    block_cluster,
                                                    block_size, cluster))
            rfc_blocks.append(create_block_entry(block_cluster, block_size,
                                                 cluster))
        self.refcount_table = FieldsList(rfc_table)
        self.refcount_blocks = FieldsList(rfc_blocks)

        self.header['refcount_table_offset'][0].value = table_offset
        self.header['refcount_table_clusters'][0].value = len(table_clusters)

    def fuzz(self, fields_to_fuzz=None):
        """Fuzz an image by corrupting values of a random subset of its fields.

        Without parameters the method fuzzes an entire image.

        If 'fields_to_fuzz' is specified then only fields in this list will be
        fuzzed. 'fields_to_fuzz' can contain both individual fields and more
        general image elements as a header or tables.

        In the first case the field will be fuzzed always.
        In the second a random subset of fields will be selected and fuzzed.
        """
        def coin():
            """Return boolean value proportional to a portion of fields to be
            fuzzed.
            """
            return random.random() < self.bias

        if fields_to_fuzz is None:
            for field in self:
                if coin():
                    field.value = getattr(fuzz, field.name)(field.value)
        else:
            for item in fields_to_fuzz:
                if len(item) == 1:
                    for field in getattr(self, item[0]):
                        if coin():
                            field.value = getattr(fuzz,
                                                  field.name)(field.value)
                else:
                    # If fields with the requested name were not generated
                    # getattr(self, item[0])[item[1]] returns an empty list
                    for field in getattr(self, item[0])[item[1]]:
                        field.value = getattr(fuzz, field.name)(field.value)

    def write(self, filename):
        """Write an entire image to the file."""
        image_file = open(filename, 'wb')
        for field in self:
            image_file.seek(field.offset)
            image_file.write(struct.pack(field.fmt, field.value))

        for cluster in sorted(self.data_clusters):
            image_file.seek(cluster * self.cluster_size)
            image_file.write(urandom(self.cluster_size))

        # Align the real image size to the cluster size
        image_file.seek(0, 2)
        size = image_file.tell()
        rounded = (size + self.cluster_size - 1) & ~(self.cluster_size - 1)
        if rounded > size:
            image_file.seek(rounded - 1)
            image_file.write(b'\x00')
        image_file.close()

    @staticmethod
    def _size_params():
        """Generate a random image size aligned to a random correct
        cluster size.
        """
        cluster_bits = random.randrange(9, 21)
        cluster_size = 1 << cluster_bits
        img_size = random.randrange(0, MAX_IMAGE_SIZE + 1, cluster_size)
        return (cluster_bits, img_size)

    @staticmethod
    def _get_available_clusters(used, number):
        """Return a set of indices of not allocated clusters.

        'used' contains indices of currently allocated clusters.
        All clusters that cannot be allocated between 'used' clusters will have
        indices appended to the end of 'used'.
        """
        append_id = max(used) + 1
        free = set(range(1, append_id)) - used
        if len(free) >= number:
            return set(random.sample(free, number))
        else:
            return free | set(range(append_id, append_id + number - len(free)))

    @staticmethod
    def _get_adjacent_clusters(used, size):
        """Return an index of the first cluster in the sequence of free ones.

        'used' contains indices of currently allocated clusters. 'size' is the
        length of the sequence of free clusters.
        If the sequence of 'size' is not available between 'used' clusters, its
        first index will be append to the end of 'used'.
        """
        def get_cluster_id(lst, length):
            """Return the first index of the sequence of the specified length
            or None if the sequence cannot be inserted in the list.
            """
            if len(lst) != 0:
                pairs = []
                pair = (lst[0], 1)
                for i in range(1, len(lst)):
                    if lst[i] == lst[i-1] + 1:
                        pair = (lst[i], pair[1] + 1)
                    else:
                        pairs.append(pair)
                        pair = (lst[i], 1)
                pairs.append(pair)
                random.shuffle(pairs)
                for x, s in pairs:
                    if s >= length:
                        return x - length + 1
            return None

        append_id = max(used) + 1
        free = list(set(range(1, append_id)) - used)
        idx = get_cluster_id(free, size)
        if idx is None:
            return append_id
        else:
            return idx

    @staticmethod
    def _alloc_data(img_size, cluster_size):
        """Return a set of random indices of clusters allocated for guest data.
        """
        num_of_cls = img_size // cluster_size
        return set(random.sample(range(1, num_of_cls + 1),
                                 random.randint(0, num_of_cls)))

    def _get_metadata(self):
        """Return indices of clusters allocated for image metadata."""
        ids = set()
        for x in self:
            ids.add(x.offset // self.cluster_size)
        return ids


def create_image(test_img_path, backing_file_name=None, backing_file_fmt=None,
                 fields_to_fuzz=None):
    """Create a fuzzed image and write it to the specified file."""
    image = Image(backing_file_name)
    image.set_backing_file_format(backing_file_fmt)
    image.create_feature_name_table()
    image.set_end_of_extension_area()
    image.create_l_structures()
    image.create_refcount_structures()
    image.fuzz(fields_to_fuzz)
    image.write(test_img_path)
    return image.image_size