aboutsummaryrefslogtreecommitdiff
path: root/target/xtensa/helper.c
blob: e8fba20918fefd21223e887ae6536de24782230b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/*
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the Open Source and Linux Lab nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/gdbstub.h"
#include "qemu/host-utils.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif

static struct XtensaConfigList *xtensa_cores;

static void xtensa_core_class_init(ObjectClass *oc, void *data)
{
    CPUClass *cc = CPU_CLASS(oc);
    XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
    const XtensaConfig *config = data;

    xcc->config = config;

    /* Use num_core_regs to see only non-privileged registers in an unmodified
     * gdb. Use num_regs to see all registers. gdb modification is required
     * for that: reset bit 0 in the 'flags' field of the registers definitions
     * in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
     */
    cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
}

void xtensa_finalize_config(XtensaConfig *config)
{
    unsigned i, n = 0;

    if (config->gdb_regmap.num_regs) {
        return;
    }

    for (i = 0; config->gdb_regmap.reg[i].targno >= 0; ++i) {
        n += (config->gdb_regmap.reg[i].type != 6);
    }
    config->gdb_regmap.num_regs = n;
}

void xtensa_register_core(XtensaConfigList *node)
{
    TypeInfo type = {
        .parent = TYPE_XTENSA_CPU,
        .class_init = xtensa_core_class_init,
        .class_data = (void *)node->config,
    };

    node->next = xtensa_cores;
    xtensa_cores = node;
    type.name = g_strdup_printf("%s-" TYPE_XTENSA_CPU, node->config->name);
    type_register(&type);
    g_free((gpointer)type.name);
}

static uint32_t check_hw_breakpoints(CPUXtensaState *env)
{
    unsigned i;

    for (i = 0; i < env->config->ndbreak; ++i) {
        if (env->cpu_watchpoint[i] &&
                env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
            return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
        }
    }
    return 0;
}

void xtensa_breakpoint_handler(CPUState *cs)
{
    XtensaCPU *cpu = XTENSA_CPU(cs);
    CPUXtensaState *env = &cpu->env;

    if (cs->watchpoint_hit) {
        if (cs->watchpoint_hit->flags & BP_CPU) {
            uint32_t cause;

            cs->watchpoint_hit = NULL;
            cause = check_hw_breakpoints(env);
            if (cause) {
                debug_exception_env(env, cause);
            }
            cpu_loop_exit_noexc(cs);
        }
    }
}

void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
    XtensaConfigList *core = xtensa_cores;
    cpu_fprintf(f, "Available CPUs:\n");
    for (; core; core = core->next) {
        cpu_fprintf(f, "  %s\n", core->config->name);
    }
}

hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
    XtensaCPU *cpu = XTENSA_CPU(cs);
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;

    if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
                &paddr, &page_size, &access) == 0) {
        return paddr;
    }
    if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
                &paddr, &page_size, &access) == 0) {
        return paddr;
    }
    return ~0;
}

static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
{
    if (xtensa_option_enabled(env->config,
                XTENSA_OPTION_RELOCATABLE_VECTOR)) {
        return vector - env->config->vecbase + env->sregs[VECBASE];
    } else {
        return vector;
    }
}

/*!
 * Handle penging IRQ.
 * For the high priority interrupt jump to the corresponding interrupt vector.
 * For the level-1 interrupt convert it to either user, kernel or double
 * exception with the 'level-1 interrupt' exception cause.
 */
static void handle_interrupt(CPUXtensaState *env)
{
    int level = env->pending_irq_level;

    if (level > xtensa_get_cintlevel(env) &&
            level <= env->config->nlevel &&
            (env->config->level_mask[level] &
             env->sregs[INTSET] &
             env->sregs[INTENABLE])) {
        CPUState *cs = CPU(xtensa_env_get_cpu(env));

        if (level > 1) {
            env->sregs[EPC1 + level - 1] = env->pc;
            env->sregs[EPS2 + level - 2] = env->sregs[PS];
            env->sregs[PS] =
                (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
            env->pc = relocated_vector(env,
                    env->config->interrupt_vector[level]);
        } else {
            env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;

            if (env->sregs[PS] & PS_EXCM) {
                if (env->config->ndepc) {
                    env->sregs[DEPC] = env->pc;
                } else {
                    env->sregs[EPC1] = env->pc;
                }
                cs->exception_index = EXC_DOUBLE;
            } else {
                env->sregs[EPC1] = env->pc;
                cs->exception_index =
                    (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
            }
            env->sregs[PS] |= PS_EXCM;
        }
        env->exception_taken = 1;
    }
}

/* Called from cpu_handle_interrupt with BQL held */
void xtensa_cpu_do_interrupt(CPUState *cs)
{
    XtensaCPU *cpu = XTENSA_CPU(cs);
    CPUXtensaState *env = &cpu->env;

    if (cs->exception_index == EXC_IRQ) {
        qemu_log_mask(CPU_LOG_INT,
                "%s(EXC_IRQ) level = %d, cintlevel = %d, "
                "pc = %08x, a0 = %08x, ps = %08x, "
                "intset = %08x, intenable = %08x, "
                "ccount = %08x\n",
                __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
                env->pc, env->regs[0], env->sregs[PS],
                env->sregs[INTSET], env->sregs[INTENABLE],
                env->sregs[CCOUNT]);
        handle_interrupt(env);
    }

    switch (cs->exception_index) {
    case EXC_WINDOW_OVERFLOW4:
    case EXC_WINDOW_UNDERFLOW4:
    case EXC_WINDOW_OVERFLOW8:
    case EXC_WINDOW_UNDERFLOW8:
    case EXC_WINDOW_OVERFLOW12:
    case EXC_WINDOW_UNDERFLOW12:
    case EXC_KERNEL:
    case EXC_USER:
    case EXC_DOUBLE:
    case EXC_DEBUG:
        qemu_log_mask(CPU_LOG_INT, "%s(%d) "
                "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
                __func__, cs->exception_index,
                env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
        if (env->config->exception_vector[cs->exception_index]) {
            env->pc = relocated_vector(env,
                    env->config->exception_vector[cs->exception_index]);
            env->exception_taken = 1;
        } else {
            qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
                          __func__, env->pc, cs->exception_index);
        }
        break;

    case EXC_IRQ:
        break;

    default:
        qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
                __func__, env->pc, cs->exception_index);
        break;
    }
    check_interrupts(env);
}

bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
    if (interrupt_request & CPU_INTERRUPT_HARD) {
        cs->exception_index = EXC_IRQ;
        xtensa_cpu_do_interrupt(cs);
        return true;
    }
    return false;
}

static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
        const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
    unsigned wi, ei;

    for (wi = 0; wi < tlb->nways; ++wi) {
        for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
            entry[wi][ei].asid = 0;
            entry[wi][ei].variable = true;
        }
    }
}

static void reset_tlb_mmu_ways56(CPUXtensaState *env,
        const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
    if (!tlb->varway56) {
        static const xtensa_tlb_entry way5[] = {
            {
                .vaddr = 0xd0000000,
                .paddr = 0,
                .asid = 1,
                .attr = 7,
                .variable = false,
            }, {
                .vaddr = 0xd8000000,
                .paddr = 0,
                .asid = 1,
                .attr = 3,
                .variable = false,
            }
        };
        static const xtensa_tlb_entry way6[] = {
            {
                .vaddr = 0xe0000000,
                .paddr = 0xf0000000,
                .asid = 1,
                .attr = 7,
                .variable = false,
            }, {
                .vaddr = 0xf0000000,
                .paddr = 0xf0000000,
                .asid = 1,
                .attr = 3,
                .variable = false,
            }
        };
        memcpy(entry[5], way5, sizeof(way5));
        memcpy(entry[6], way6, sizeof(way6));
    } else {
        uint32_t ei;
        for (ei = 0; ei < 8; ++ei) {
            entry[6][ei].vaddr = ei << 29;
            entry[6][ei].paddr = ei << 29;
            entry[6][ei].asid = 1;
            entry[6][ei].attr = 3;
        }
    }
}

static void reset_tlb_region_way0(CPUXtensaState *env,
        xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
    unsigned ei;

    for (ei = 0; ei < 8; ++ei) {
        entry[0][ei].vaddr = ei << 29;
        entry[0][ei].paddr = ei << 29;
        entry[0][ei].asid = 1;
        entry[0][ei].attr = 2;
        entry[0][ei].variable = true;
    }
}

void reset_mmu(CPUXtensaState *env)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        env->sregs[RASID] = 0x04030201;
        env->sregs[ITLBCFG] = 0;
        env->sregs[DTLBCFG] = 0;
        env->autorefill_idx = 0;
        reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
        reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
        reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
        reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
    } else {
        reset_tlb_region_way0(env, env->itlb);
        reset_tlb_region_way0(env, env->dtlb);
    }
}

static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
{
    unsigned i;
    for (i = 0; i < 4; ++i) {
        if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
            return i;
        }
    }
    return 0xff;
}

/*!
 * Lookup xtensa TLB for the given virtual address.
 * See ISA, 4.6.2.2
 *
 * \param pwi: [out] way index
 * \param pei: [out] entry index
 * \param pring: [out] access ring
 * \return 0 if ok, exception cause code otherwise
 */
int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
        uint32_t *pwi, uint32_t *pei, uint8_t *pring)
{
    const xtensa_tlb *tlb = dtlb ?
        &env->config->dtlb : &env->config->itlb;
    const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
        env->dtlb : env->itlb;

    int nhits = 0;
    unsigned wi;

    for (wi = 0; wi < tlb->nways; ++wi) {
        uint32_t vpn;
        uint32_t ei;
        split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
        if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
            unsigned ring = get_ring(env, entry[wi][ei].asid);
            if (ring < 4) {
                if (++nhits > 1) {
                    return dtlb ?
                        LOAD_STORE_TLB_MULTI_HIT_CAUSE :
                        INST_TLB_MULTI_HIT_CAUSE;
                }
                *pwi = wi;
                *pei = ei;
                *pring = ring;
            }
        }
    }
    return nhits ? 0 :
        (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
}

/*!
 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
 * See ISA, 4.6.5.10
 */
static unsigned mmu_attr_to_access(uint32_t attr)
{
    unsigned access = 0;

    if (attr < 12) {
        access |= PAGE_READ;
        if (attr & 0x1) {
            access |= PAGE_EXEC;
        }
        if (attr & 0x2) {
            access |= PAGE_WRITE;
        }

        switch (attr & 0xc) {
        case 0:
            access |= PAGE_CACHE_BYPASS;
            break;

        case 4:
            access |= PAGE_CACHE_WB;
            break;

        case 8:
            access |= PAGE_CACHE_WT;
            break;
        }
    } else if (attr == 13) {
        access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
    }
    return access;
}

/*!
 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
 * See ISA, 4.6.3.3
 */
static unsigned region_attr_to_access(uint32_t attr)
{
    static const unsigned access[16] = {
         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
         [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
    };

    return access[attr & 0xf];
}

/*!
 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
 * See ISA, A.2.14 The Cache Attribute Register
 */
static unsigned cacheattr_attr_to_access(uint32_t attr)
{
    static const unsigned access[16] = {
         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
    };

    return access[attr & 0xf];
}

static bool is_access_granted(unsigned access, int is_write)
{
    switch (is_write) {
    case 0:
        return access & PAGE_READ;

    case 1:
        return access & PAGE_WRITE;

    case 2:
        return access & PAGE_EXEC;

    default:
        return 0;
    }
}

static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);

static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
        uint32_t vaddr, int is_write, int mmu_idx,
        uint32_t *paddr, uint32_t *page_size, unsigned *access,
        bool may_lookup_pt)
{
    bool dtlb = is_write != 2;
    uint32_t wi;
    uint32_t ei;
    uint8_t ring;
    uint32_t vpn;
    uint32_t pte;
    const xtensa_tlb_entry *entry = NULL;
    xtensa_tlb_entry tmp_entry;
    int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);

    if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
            may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
        ring = (pte >> 4) & 0x3;
        wi = 0;
        split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);

        if (update_tlb) {
            wi = ++env->autorefill_idx & 0x3;
            xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
            env->sregs[EXCVADDR] = vaddr;
            qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
                          __func__, vaddr, vpn, pte);
        } else {
            xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
            entry = &tmp_entry;
        }
        ret = 0;
    }
    if (ret != 0) {
        return ret;
    }

    if (entry == NULL) {
        entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
    }

    if (ring < mmu_idx) {
        return dtlb ?
            LOAD_STORE_PRIVILEGE_CAUSE :
            INST_FETCH_PRIVILEGE_CAUSE;
    }

    *access = mmu_attr_to_access(entry->attr) &
        ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
    if (!is_access_granted(*access, is_write)) {
        return dtlb ?
            (is_write ?
             STORE_PROHIBITED_CAUSE :
             LOAD_PROHIBITED_CAUSE) :
            INST_FETCH_PROHIBITED_CAUSE;
    }

    *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
    *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;

    return 0;
}

static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
{
    CPUState *cs = CPU(xtensa_env_get_cpu(env));
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
    uint32_t pt_vaddr =
        (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
    int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
            &paddr, &page_size, &access, false);

    qemu_log_mask(CPU_LOG_MMU, "%s: trying autorefill(%08x) -> %08x\n",
                  __func__, vaddr, ret ? ~0 : paddr);

    if (ret == 0) {
        *pte = ldl_phys(cs->as, paddr);
    }
    return ret;
}

static int get_physical_addr_region(CPUXtensaState *env,
        uint32_t vaddr, int is_write, int mmu_idx,
        uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
    bool dtlb = is_write != 2;
    uint32_t wi = 0;
    uint32_t ei = (vaddr >> 29) & 0x7;
    const xtensa_tlb_entry *entry =
        xtensa_tlb_get_entry(env, dtlb, wi, ei);

    *access = region_attr_to_access(entry->attr);
    if (!is_access_granted(*access, is_write)) {
        return dtlb ?
            (is_write ?
             STORE_PROHIBITED_CAUSE :
             LOAD_PROHIBITED_CAUSE) :
            INST_FETCH_PROHIBITED_CAUSE;
    }

    *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
    *page_size = ~REGION_PAGE_MASK + 1;

    return 0;
}

/*!
 * Convert virtual address to physical addr.
 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
 *
 * \return 0 if ok, exception cause code otherwise
 */
int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
        uint32_t vaddr, int is_write, int mmu_idx,
        uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        return get_physical_addr_mmu(env, update_tlb,
                vaddr, is_write, mmu_idx, paddr, page_size, access, true);
    } else if (xtensa_option_bits_enabled(env->config,
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
        return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
                paddr, page_size, access);
    } else {
        *paddr = vaddr;
        *page_size = TARGET_PAGE_SIZE;
        *access = cacheattr_attr_to_access(
                env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
        return 0;
    }
}

static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
        CPUXtensaState *env, bool dtlb)
{
    unsigned wi, ei;
    const xtensa_tlb *conf =
        dtlb ? &env->config->dtlb : &env->config->itlb;
    unsigned (*attr_to_access)(uint32_t) =
        xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
        mmu_attr_to_access : region_attr_to_access;

    for (wi = 0; wi < conf->nways; ++wi) {
        uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
        const char *sz_text;
        bool print_header = true;

        if (sz >= 0x100000) {
            sz >>= 20;
            sz_text = "MB";
        } else {
            sz >>= 10;
            sz_text = "KB";
        }

        for (ei = 0; ei < conf->way_size[wi]; ++ei) {
            const xtensa_tlb_entry *entry =
                xtensa_tlb_get_entry(env, dtlb, wi, ei);

            if (entry->asid) {
                static const char * const cache_text[8] = {
                    [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
                    [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
                    [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
                    [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
                };
                unsigned access = attr_to_access(entry->attr);
                unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
                    PAGE_CACHE_SHIFT;

                if (print_header) {
                    print_header = false;
                    cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
                    cpu_fprintf(f,
                            "\tVaddr       Paddr       ASID  Attr RWX Cache\n"
                            "\t----------  ----------  ----  ---- --- -------\n");
                }
                cpu_fprintf(f,
                        "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
                        entry->vaddr,
                        entry->paddr,
                        entry->asid,
                        entry->attr,
                        (access & PAGE_READ) ? 'R' : '-',
                        (access & PAGE_WRITE) ? 'W' : '-',
                        (access & PAGE_EXEC) ? 'X' : '-',
                        cache_text[cache_idx] ? cache_text[cache_idx] :
                            "Invalid");
            }
        }
    }
}

void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
{
    if (xtensa_option_bits_enabled(env->config,
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
                XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {

        cpu_fprintf(f, "ITLB:\n");
        dump_tlb(f, cpu_fprintf, env, false);
        cpu_fprintf(f, "\nDTLB:\n");
        dump_tlb(f, cpu_fprintf, env, true);
    } else {
        cpu_fprintf(f, "No TLB for this CPU core\n");
    }
}

void xtensa_runstall(CPUXtensaState *env, bool runstall)
{
    CPUState *cpu = CPU(xtensa_env_get_cpu(env));

    env->runstall = runstall;
    cpu->halted = runstall;
    if (runstall) {
        cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
    } else {
        cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
    }
}