aboutsummaryrefslogtreecommitdiff
path: root/target/unicore32/ucf64_helper.c
blob: 6c919010c36fe003b2d7de66697047b30764209a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
 * UniCore-F64 simulation helpers for QEMU.
 *
 * Copyright (C) 2010-2012 Guan Xuetao
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation, or any later version.
 * See the COPYING file in the top-level directory.
 */
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"

/*
 * The convention used for UniCore-F64 instructions:
 *  Single precition routines have a "s" suffix
 *  Double precision routines have a "d" suffix.
 */

/* Convert host exception flags to f64 form.  */
static inline int ucf64_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid) {
        target_bits |= UCF64_FPSCR_FLAG_INVALID;
    }
    if (host_bits & float_flag_divbyzero) {
        target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
    }
    if (host_bits & float_flag_overflow) {
        target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
    }
    if (host_bits & float_flag_underflow) {
        target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
    }
    if (host_bits & float_flag_inexact) {
        target_bits |= UCF64_FPSCR_FLAG_INEXACT;
    }
    return target_bits;
}

uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env)
{
    int i;
    uint32_t fpscr;

    fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
    i = get_float_exception_flags(&env->ucf64.fp_status);
    fpscr |= ucf64_exceptbits_from_host(i);
    return fpscr;
}

/* Convert ucf64 exception flags to target form.  */
static inline int ucf64_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
        host_bits |= float_flag_invalid;
    }
    if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
        host_bits |= float_flag_divbyzero;
    }
    if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
        host_bits |= float_flag_overflow;
    }
    if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
        host_bits |= float_flag_underflow;
    }
    if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
        host_bits |= float_flag_inexact;
    }
    return host_bits;
}

void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    int i;
    uint32_t changed;

    changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
    env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);

    changed ^= val;
    if (changed & (UCF64_FPSCR_RND_MASK)) {
        i = UCF64_FPSCR_RND(val);
        switch (i) {
        case 0:
            i = float_round_nearest_even;
            break;
        case 1:
            i = float_round_to_zero;
            break;
        case 2:
            i = float_round_up;
            break;
        case 3:
            i = float_round_down;
            break;
        default: /* 100 and 101 not implement */
            cpu_abort(CPU(cpu), "Unsupported UniCore-F64 round mode");
        }
        set_float_rounding_mode(i, &env->ucf64.fp_status);
    }

    i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
    set_float_exception_flags(i, &env->ucf64.fp_status);
}

float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env)
{
    return float32_add(a, b, &env->ucf64.fp_status);
}

float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env)
{
    return float64_add(a, b, &env->ucf64.fp_status);
}

float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env)
{
    return float32_sub(a, b, &env->ucf64.fp_status);
}

float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env)
{
    return float64_sub(a, b, &env->ucf64.fp_status);
}

float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env)
{
    return float32_mul(a, b, &env->ucf64.fp_status);
}

float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env)
{
    return float64_mul(a, b, &env->ucf64.fp_status);
}

float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env)
{
    return float32_div(a, b, &env->ucf64.fp_status);
}

float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env)
{
    return float64_div(a, b, &env->ucf64.fp_status);
}

float32 HELPER(ucf64_negs)(float32 a)
{
    return float32_chs(a);
}

float64 HELPER(ucf64_negd)(float64 a)
{
    return float64_chs(a);
}

float32 HELPER(ucf64_abss)(float32 a)
{
    return float32_abs(a);
}

float64 HELPER(ucf64_absd)(float64 a)
{
    return float64_abs(a);
}

void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c,
        CPUUniCore32State *env)
{
    int flag;
    flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
    env->CF = 0;
    switch (c & 0x7) {
    case 0: /* F */
        break;
    case 1: /* UN */
        if (flag == 2) {
            env->CF = 1;
        }
        break;
    case 2: /* EQ */
        if (flag == 0) {
            env->CF = 1;
        }
        break;
    case 3: /* UEQ */
        if ((flag == 0) || (flag == 2)) {
            env->CF = 1;
        }
        break;
    case 4: /* OLT */
        if (flag == -1) {
            env->CF = 1;
        }
        break;
    case 5: /* ULT */
        if ((flag == -1) || (flag == 2)) {
            env->CF = 1;
        }
        break;
    case 6: /* OLE */
        if ((flag == -1) || (flag == 0)) {
            env->CF = 1;
        }
        break;
    case 7: /* ULE */
        if (flag != 1) {
            env->CF = 1;
        }
        break;
    }
    env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
                    | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
}

void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c,
        CPUUniCore32State *env)
{
    int flag;
    flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
    env->CF = 0;
    switch (c & 0x7) {
    case 0: /* F */
        break;
    case 1: /* UN */
        if (flag == 2) {
            env->CF = 1;
        }
        break;
    case 2: /* EQ */
        if (flag == 0) {
            env->CF = 1;
        }
        break;
    case 3: /* UEQ */
        if ((flag == 0) || (flag == 2)) {
            env->CF = 1;
        }
        break;
    case 4: /* OLT */
        if (flag == -1) {
            env->CF = 1;
        }
        break;
    case 5: /* ULT */
        if ((flag == -1) || (flag == 2)) {
            env->CF = 1;
        }
        break;
    case 6: /* OLE */
        if ((flag == -1) || (flag == 0)) {
            env->CF = 1;
        }
        break;
    case 7: /* ULE */
        if (flag != 1) {
            env->CF = 1;
        }
        break;
    }
    env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
                    | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
}

/* Helper routines to perform bitwise copies between float and int.  */
static inline float32 ucf64_itos(uint32_t i)
{
    union {
        uint32_t i;
        float32 s;
    } v;

    v.i = i;
    return v.s;
}

static inline uint32_t ucf64_stoi(float32 s)
{
    union {
        uint32_t i;
        float32 s;
    } v;

    v.s = s;
    return v.i;
}

/* Integer to float conversion.  */
float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env)
{
    return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
}

float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env)
{
    return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
}

/* Float to integer conversion.  */
float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env)
{
    return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
}

float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env)
{
    return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
}

/* floating point conversion */
float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env)
{
    return float32_to_float64(x, &env->ucf64.fp_status);
}

float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env)
{
    return float64_to_float32(x, &env->ucf64.fp_status);
}