aboutsummaryrefslogtreecommitdiff
path: root/target/sparc/mmu_helper.c
blob: e7b1997d54ee0422aa8628f28181521963caf493 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/*
 *  Sparc MMU helpers
 *
 *  Copyright (c) 2003-2005 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/qemu-print.h"
#include "trace.h"

/* Sparc MMU emulation */

#ifndef TARGET_SPARC64
/*
 * Sparc V8 Reference MMU (SRMMU)
 */
static const int access_table[8][8] = {
    { 0, 0, 0, 0, 8, 0, 12, 12 },
    { 0, 0, 0, 0, 8, 0, 0, 0 },
    { 8, 8, 0, 0, 0, 8, 12, 12 },
    { 8, 8, 0, 0, 0, 8, 0, 0 },
    { 8, 0, 8, 0, 8, 8, 12, 12 },
    { 8, 0, 8, 0, 8, 0, 8, 0 },
    { 8, 8, 8, 0, 8, 8, 12, 12 },
    { 8, 8, 8, 0, 8, 8, 8, 0 }
};

static const int perm_table[2][8] = {
    {
        PAGE_READ,
        PAGE_READ | PAGE_WRITE,
        PAGE_READ | PAGE_EXEC,
        PAGE_READ | PAGE_WRITE | PAGE_EXEC,
        PAGE_EXEC,
        PAGE_READ | PAGE_WRITE,
        PAGE_READ | PAGE_EXEC,
        PAGE_READ | PAGE_WRITE | PAGE_EXEC
    },
    {
        PAGE_READ,
        PAGE_READ | PAGE_WRITE,
        PAGE_READ | PAGE_EXEC,
        PAGE_READ | PAGE_WRITE | PAGE_EXEC,
        PAGE_EXEC,
        PAGE_READ,
        0,
        0,
    }
};

static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full,
                                int *access_index, target_ulong address,
                                int rw, int mmu_idx)
{
    int access_perms = 0;
    hwaddr pde_ptr;
    uint32_t pde;
    int error_code = 0, is_dirty, is_user;
    unsigned long page_offset;
    CPUState *cs = env_cpu(env);
    MemTxResult result;

    is_user = mmu_idx == MMU_USER_IDX;

    if (mmu_idx == MMU_PHYS_IDX) {
        full->lg_page_size = TARGET_PAGE_BITS;
        /* Boot mode: instruction fetches are taken from PROM */
        if (rw == 2 && (env->mmuregs[0] & env->def.mmu_bm)) {
            full->phys_addr = env->prom_addr | (address & 0x7ffffULL);
            full->prot = PAGE_READ | PAGE_EXEC;
            return 0;
        }
        full->phys_addr = address;
        full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        return 0;
    }

    *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
    full->phys_addr = 0xffffffffffff0000ULL;

    /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
    /* Context base + context number */
    pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
    pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
    if (result != MEMTX_OK) {
        return 4 << 2; /* Translation fault, L = 0 */
    }

    /* Ctx pde */
    switch (pde & PTE_ENTRYTYPE_MASK) {
    default:
    case 0: /* Invalid */
        return 1 << 2;
    case 2: /* L0 PTE, maybe should not happen? */
    case 3: /* Reserved */
        return 4 << 2;
    case 1: /* L0 PDE */
        pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
        pde = address_space_ldl(cs->as, pde_ptr,
                                MEMTXATTRS_UNSPECIFIED, &result);
        if (result != MEMTX_OK) {
            return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
        }

        switch (pde & PTE_ENTRYTYPE_MASK) {
        default:
        case 0: /* Invalid */
            return (1 << 8) | (1 << 2);
        case 3: /* Reserved */
            return (1 << 8) | (4 << 2);
        case 1: /* L1 PDE */
            pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
            pde = address_space_ldl(cs->as, pde_ptr,
                                    MEMTXATTRS_UNSPECIFIED, &result);
            if (result != MEMTX_OK) {
                return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
            }

            switch (pde & PTE_ENTRYTYPE_MASK) {
            default:
            case 0: /* Invalid */
                return (2 << 8) | (1 << 2);
            case 3: /* Reserved */
                return (2 << 8) | (4 << 2);
            case 1: /* L2 PDE */
                pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
                pde = address_space_ldl(cs->as, pde_ptr,
                                        MEMTXATTRS_UNSPECIFIED, &result);
                if (result != MEMTX_OK) {
                    return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
                }

                switch (pde & PTE_ENTRYTYPE_MASK) {
                default:
                case 0: /* Invalid */
                    return (3 << 8) | (1 << 2);
                case 1: /* PDE, should not happen */
                case 3: /* Reserved */
                    return (3 << 8) | (4 << 2);
                case 2: /* L3 PTE */
                    page_offset = 0;
                }
                full->lg_page_size = TARGET_PAGE_BITS;
                break;
            case 2: /* L2 PTE */
                page_offset = address & 0x3f000;
                full->lg_page_size = 18;
            }
            break;
        case 2: /* L1 PTE */
            page_offset = address & 0xfff000;
            full->lg_page_size = 24;
            break;
        }
    }

    /* check access */
    access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
    error_code = access_table[*access_index][access_perms];
    if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
        return error_code;
    }

    /* update page modified and dirty bits */
    is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
    if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
        pde |= PG_ACCESSED_MASK;
        if (is_dirty) {
            pde |= PG_MODIFIED_MASK;
        }
        stl_phys_notdirty(cs->as, pde_ptr, pde);
    }

    /* the page can be put in the TLB */
    full->prot = perm_table[is_user][access_perms];
    if (!(pde & PG_MODIFIED_MASK)) {
        /* only set write access if already dirty... otherwise wait
           for dirty access */
        full->prot &= ~PAGE_WRITE;
    }

    /* Even if large ptes, we map only one 4KB page in the cache to
       avoid filling it too fast */
    full->phys_addr = ((hwaddr)(pde & PTE_ADDR_MASK) << 4) + page_offset;
    return error_code;
}

/* Perform address translation */
bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
                        MMUAccessType access_type, int mmu_idx,
                        bool probe, uintptr_t retaddr)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;
    CPUTLBEntryFull full = {};
    target_ulong vaddr;
    int error_code = 0, access_index;

    /*
     * TODO: If we ever need tlb_vaddr_to_host for this target,
     * then we must figure out how to manipulate FSR and FAR
     * when both MMU_NF and probe are set.  In the meantime,
     * do not support this use case.
     */
    assert(!probe);

    address &= TARGET_PAGE_MASK;
    error_code = get_physical_address(env, &full, &access_index,
                                      address, access_type, mmu_idx);
    vaddr = address;
    if (likely(error_code == 0)) {
        qemu_log_mask(CPU_LOG_MMU,
                      "Translate at %" VADDR_PRIx " -> "
                      HWADDR_FMT_plx ", vaddr " TARGET_FMT_lx "\n",
                      address, full.phys_addr, vaddr);
        tlb_set_page_full(cs, mmu_idx, vaddr, &full);
        return true;
    }

    if (env->mmuregs[3]) { /* Fault status register */
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
    }
    env->mmuregs[3] |= (access_index << 5) | error_code | 2;
    env->mmuregs[4] = address; /* Fault address register */

    if ((env->mmuregs[0] & MMU_NF) || env->psret == 0)  {
        /* No fault mode: if a mapping is available, just override
           permissions. If no mapping is available, redirect accesses to
           neverland. Fake/overridden mappings will be flushed when
           switching to normal mode. */
        full.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        tlb_set_page_full(cs, mmu_idx, vaddr, &full);
        return true;
    } else {
        if (access_type == MMU_INST_FETCH) {
            cs->exception_index = TT_TFAULT;
        } else {
            cs->exception_index = TT_DFAULT;
        }
        cpu_loop_exit_restore(cs, retaddr);
    }
}

target_ulong mmu_probe(CPUSPARCState *env, target_ulong address, int mmulev)
{
    CPUState *cs = env_cpu(env);
    hwaddr pde_ptr;
    uint32_t pde;
    MemTxResult result;

    /*
     * TODO: MMU probe operations are supposed to set the fault
     * status registers, but we don't do this.
     */

    /* Context base + context number */
    pde_ptr = (hwaddr)(env->mmuregs[1] << 4) +
        (env->mmuregs[2] << 2);
    pde = address_space_ldl(cs->as, pde_ptr, MEMTXATTRS_UNSPECIFIED, &result);
    if (result != MEMTX_OK) {
        return 0;
    }

    switch (pde & PTE_ENTRYTYPE_MASK) {
    default:
    case 0: /* Invalid */
    case 2: /* PTE, maybe should not happen? */
    case 3: /* Reserved */
        return 0;
    case 1: /* L1 PDE */
        if (mmulev == 3) {
            return pde;
        }
        pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
        pde = address_space_ldl(cs->as, pde_ptr,
                                MEMTXATTRS_UNSPECIFIED, &result);
        if (result != MEMTX_OK) {
            return 0;
        }

        switch (pde & PTE_ENTRYTYPE_MASK) {
        default:
        case 0: /* Invalid */
        case 3: /* Reserved */
            return 0;
        case 2: /* L1 PTE */
            return pde;
        case 1: /* L2 PDE */
            if (mmulev == 2) {
                return pde;
            }
            pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
            pde = address_space_ldl(cs->as, pde_ptr,
                                    MEMTXATTRS_UNSPECIFIED, &result);
            if (result != MEMTX_OK) {
                return 0;
            }

            switch (pde & PTE_ENTRYTYPE_MASK) {
            default:
            case 0: /* Invalid */
            case 3: /* Reserved */
                return 0;
            case 2: /* L2 PTE */
                return pde;
            case 1: /* L3 PDE */
                if (mmulev == 1) {
                    return pde;
                }
                pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
                pde = address_space_ldl(cs->as, pde_ptr,
                                        MEMTXATTRS_UNSPECIFIED, &result);
                if (result != MEMTX_OK) {
                    return 0;
                }

                switch (pde & PTE_ENTRYTYPE_MASK) {
                default:
                case 0: /* Invalid */
                case 1: /* PDE, should not happen */
                case 3: /* Reserved */
                    return 0;
                case 2: /* L3 PTE */
                    return pde;
                }
            }
        }
    }
    return 0;
}

void dump_mmu(CPUSPARCState *env)
{
    CPUState *cs = env_cpu(env);
    target_ulong va, va1, va2;
    unsigned int n, m, o;
    hwaddr pa;
    uint32_t pde;

    qemu_printf("Root ptr: " HWADDR_FMT_plx ", ctx: %d\n",
                (hwaddr)env->mmuregs[1] << 4, env->mmuregs[2]);
    for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
        pde = mmu_probe(env, va, 2);
        if (pde) {
            pa = cpu_get_phys_page_debug(cs, va);
            qemu_printf("VA: " TARGET_FMT_lx ", PA: " HWADDR_FMT_plx
                        " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
            for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
                pde = mmu_probe(env, va1, 1);
                if (pde) {
                    pa = cpu_get_phys_page_debug(cs, va1);
                    qemu_printf(" VA: " TARGET_FMT_lx ", PA: "
                                HWADDR_FMT_plx " PDE: " TARGET_FMT_lx "\n",
                                va1, pa, pde);
                    for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
                        pde = mmu_probe(env, va2, 0);
                        if (pde) {
                            pa = cpu_get_phys_page_debug(cs, va2);
                            qemu_printf("  VA: " TARGET_FMT_lx ", PA: "
                                        HWADDR_FMT_plx " PTE: "
                                        TARGET_FMT_lx "\n",
                                        va2, pa, pde);
                        }
                    }
                }
            }
        }
    }
}

/* Gdb expects all registers windows to be flushed in ram. This function handles
 * reads (and only reads) in stack frames as if windows were flushed. We assume
 * that the sparc ABI is followed.
 */
int sparc_cpu_memory_rw_debug(CPUState *cs, vaddr address,
                              uint8_t *buf, int len, bool is_write)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;
    target_ulong addr = address;
    int i;
    int len1;
    int cwp = env->cwp;

    if (!is_write) {
        for (i = 0; i < env->nwindows; i++) {
            int off;
            target_ulong fp = env->regbase[cwp * 16 + 22];

            /* Assume fp == 0 means end of frame.  */
            if (fp == 0) {
                break;
            }

            cwp = cpu_cwp_inc(env, cwp + 1);

            /* Invalid window ? */
            if (env->wim & (1 << cwp)) {
                break;
            }

            /* According to the ABI, the stack is growing downward.  */
            if (addr + len < fp) {
                break;
            }

            /* Not in this frame.  */
            if (addr > fp + 64) {
                continue;
            }

            /* Handle access before this window.  */
            if (addr < fp) {
                len1 = fp - addr;
                if (cpu_memory_rw_debug(cs, addr, buf, len1, is_write) != 0) {
                    return -1;
                }
                addr += len1;
                len -= len1;
                buf += len1;
            }

            /* Access byte per byte to registers. Not very efficient but speed
             * is not critical.
             */
            off = addr - fp;
            len1 = 64 - off;

            if (len1 > len) {
                len1 = len;
            }

            for (; len1; len1--) {
                int reg = cwp * 16 + 8 + (off >> 2);
                union {
                    uint32_t v;
                    uint8_t c[4];
                } u;
                u.v = cpu_to_be32(env->regbase[reg]);
                *buf++ = u.c[off & 3];
                addr++;
                len--;
                off++;
            }

            if (len == 0) {
                return 0;
            }
        }
    }
    return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
}

#else /* !TARGET_SPARC64 */

/* 41 bit physical address space */
static inline hwaddr ultrasparc_truncate_physical(uint64_t x)
{
    return x & 0x1ffffffffffULL;
}

/*
 * UltraSparc IIi I/DMMUs
 */

/* Returns true if TTE tag is valid and matches virtual address value
   in context requires virtual address mask value calculated from TTE
   entry size */
static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
                                       uint64_t address, uint64_t context,
                                       hwaddr *physical)
{
    uint64_t mask = -(8192ULL << 3 * TTE_PGSIZE(tlb->tte));

    /* valid, context match, virtual address match? */
    if (TTE_IS_VALID(tlb->tte) &&
        (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
        && compare_masked(address, tlb->tag, mask)) {
        /* decode physical address */
        *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
        return 1;
    }

    return 0;
}

static uint64_t build_sfsr(CPUSPARCState *env, int mmu_idx, int rw)
{
    uint64_t sfsr = SFSR_VALID_BIT;

    switch (mmu_idx) {
    case MMU_PHYS_IDX:
        sfsr |= SFSR_CT_NOTRANS;
        break;
    case MMU_USER_IDX:
    case MMU_KERNEL_IDX:
        sfsr |= SFSR_CT_PRIMARY;
        break;
    case MMU_USER_SECONDARY_IDX:
    case MMU_KERNEL_SECONDARY_IDX:
        sfsr |= SFSR_CT_SECONDARY;
        break;
    case MMU_NUCLEUS_IDX:
        sfsr |= SFSR_CT_NUCLEUS;
        break;
    default:
        g_assert_not_reached();
    }

    if (rw == 1) {
        sfsr |= SFSR_WRITE_BIT;
    } else if (rw == 4) {
        sfsr |= SFSR_NF_BIT;
    }

    if (env->pstate & PS_PRIV) {
        sfsr |= SFSR_PR_BIT;
    }

    if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
        sfsr |= SFSR_OW_BIT; /* overflow (not read before another fault) */
    }

    /* FIXME: ASI field in SFSR must be set */

    return sfsr;
}

static int get_physical_address_data(CPUSPARCState *env, CPUTLBEntryFull *full,
                                     target_ulong address, int rw, int mmu_idx)
{
    CPUState *cs = env_cpu(env);
    unsigned int i;
    uint64_t sfsr;
    uint64_t context;
    bool is_user = false;

    sfsr = build_sfsr(env, mmu_idx, rw);

    switch (mmu_idx) {
    case MMU_PHYS_IDX:
        g_assert_not_reached();
    case MMU_USER_IDX:
        is_user = true;
        /* fallthru */
    case MMU_KERNEL_IDX:
        context = env->dmmu.mmu_primary_context & 0x1fff;
        break;
    case MMU_USER_SECONDARY_IDX:
        is_user = true;
        /* fallthru */
    case MMU_KERNEL_SECONDARY_IDX:
        context = env->dmmu.mmu_secondary_context & 0x1fff;
        break;
    default:
        context = 0;
        break;
    }

    for (i = 0; i < 64; i++) {
        /* ctx match, vaddr match, valid? */
        if (ultrasparc_tag_match(&env->dtlb[i], address, context,
                                 &full->phys_addr)) {
            int do_fault = 0;

            if (TTE_IS_IE(env->dtlb[i].tte)) {
                full->tlb_fill_flags |= TLB_BSWAP;
            }

            /* access ok? */
            /* multiple bits in SFSR.FT may be set on TT_DFAULT */
            if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
                do_fault = 1;
                sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
                trace_mmu_helper_dfault(address, context, mmu_idx, env->tl);
            }
            if (rw == 4) {
                if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
                    do_fault = 1;
                    sfsr |= SFSR_FT_NF_E_BIT;
                }
            } else {
                if (TTE_IS_NFO(env->dtlb[i].tte)) {
                    do_fault = 1;
                    sfsr |= SFSR_FT_NFO_BIT;
                }
            }

            if (do_fault) {
                /* faults above are reported with TT_DFAULT. */
                cs->exception_index = TT_DFAULT;
            } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
                do_fault = 1;
                cs->exception_index = TT_DPROT;

                trace_mmu_helper_dprot(address, context, mmu_idx, env->tl);
            }

            if (!do_fault) {
                full->prot = PAGE_READ;
                if (TTE_IS_W_OK(env->dtlb[i].tte)) {
                    full->prot |= PAGE_WRITE;
                }

                TTE_SET_USED(env->dtlb[i].tte);

                return 0;
            }

            env->dmmu.sfsr = sfsr;
            env->dmmu.sfar = address; /* Fault address register */
            env->dmmu.tag_access = (address & ~0x1fffULL) | context;
            return 1;
        }
    }

    trace_mmu_helper_dmiss(address, context);

    /*
     * On MMU misses:
     * - UltraSPARC IIi: SFSR and SFAR unmodified
     * - JPS1: SFAR updated and some fields of SFSR updated
     */
    env->dmmu.tag_access = (address & ~0x1fffULL) | context;
    cs->exception_index = TT_DMISS;
    return 1;
}

static int get_physical_address_code(CPUSPARCState *env, CPUTLBEntryFull *full,
                                     target_ulong address, int mmu_idx)
{
    CPUState *cs = env_cpu(env);
    unsigned int i;
    uint64_t context;
    bool is_user = false;

    switch (mmu_idx) {
    case MMU_PHYS_IDX:
    case MMU_USER_SECONDARY_IDX:
    case MMU_KERNEL_SECONDARY_IDX:
        g_assert_not_reached();
    case MMU_USER_IDX:
        is_user = true;
        /* fallthru */
    case MMU_KERNEL_IDX:
        context = env->dmmu.mmu_primary_context & 0x1fff;
        break;
    default:
        context = 0;
        break;
    }

    if (env->tl == 0) {
        /* PRIMARY context */
        context = env->dmmu.mmu_primary_context & 0x1fff;
    } else {
        /* NUCLEUS context */
        context = 0;
    }

    for (i = 0; i < 64; i++) {
        /* ctx match, vaddr match, valid? */
        if (ultrasparc_tag_match(&env->itlb[i],
                                 address, context, &full->phys_addr)) {
            /* access ok? */
            if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
                /* Fault status register */
                if (env->immu.sfsr & SFSR_VALID_BIT) {
                    env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
                                                     another fault) */
                } else {
                    env->immu.sfsr = 0;
                }
                if (env->pstate & PS_PRIV) {
                    env->immu.sfsr |= SFSR_PR_BIT;
                }
                if (env->tl > 0) {
                    env->immu.sfsr |= SFSR_CT_NUCLEUS;
                }

                /* FIXME: ASI field in SFSR must be set */
                env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
                cs->exception_index = TT_TFAULT;

                env->immu.tag_access = (address & ~0x1fffULL) | context;

                trace_mmu_helper_tfault(address, context);

                return 1;
            }
            full->prot = PAGE_EXEC;
            TTE_SET_USED(env->itlb[i].tte);
            return 0;
        }
    }

    trace_mmu_helper_tmiss(address, context);

    /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
    env->immu.tag_access = (address & ~0x1fffULL) | context;
    cs->exception_index = TT_TMISS;
    return 1;
}

static int get_physical_address(CPUSPARCState *env, CPUTLBEntryFull *full,
                                int *access_index, target_ulong address,
                                int rw, int mmu_idx)
{
    /* ??? We treat everything as a small page, then explicitly flush
       everything when an entry is evicted.  */
    full->lg_page_size = TARGET_PAGE_BITS;

    /* safety net to catch wrong softmmu index use from dynamic code */
    if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
        if (rw == 2) {
            trace_mmu_helper_get_phys_addr_code(env->tl, mmu_idx,
                                                env->dmmu.mmu_primary_context,
                                                env->dmmu.mmu_secondary_context,
                                                address);
        } else {
            trace_mmu_helper_get_phys_addr_data(env->tl, mmu_idx,
                                                env->dmmu.mmu_primary_context,
                                                env->dmmu.mmu_secondary_context,
                                                address);
        }
    }

    if (mmu_idx == MMU_PHYS_IDX) {
        full->phys_addr = ultrasparc_truncate_physical(address);
        full->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        return 0;
    }

    if (rw == 2) {
        return get_physical_address_code(env, full, address, mmu_idx);
    } else {
        return get_physical_address_data(env, full, address, rw, mmu_idx);
    }
}

/* Perform address translation */
bool sparc_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
                        MMUAccessType access_type, int mmu_idx,
                        bool probe, uintptr_t retaddr)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;
    CPUTLBEntryFull full = {};
    int error_code = 0, access_index;

    address &= TARGET_PAGE_MASK;
    error_code = get_physical_address(env, &full, &access_index,
                                      address, access_type, mmu_idx);
    if (likely(error_code == 0)) {
        trace_mmu_helper_mmu_fault(address, full.phys_addr, mmu_idx, env->tl,
                                   env->dmmu.mmu_primary_context,
                                   env->dmmu.mmu_secondary_context);
        tlb_set_page_full(cs, mmu_idx, address, &full);
        return true;
    }
    if (probe) {
        return false;
    }
    cpu_loop_exit_restore(cs, retaddr);
}

void dump_mmu(CPUSPARCState *env)
{
    unsigned int i;
    const char *mask;

    qemu_printf("MMU contexts: Primary: %" PRId64 ", Secondary: %"
                PRId64 "\n",
                env->dmmu.mmu_primary_context,
                env->dmmu.mmu_secondary_context);
    qemu_printf("DMMU Tag Access: %" PRIx64 ", TSB Tag Target: %" PRIx64
                "\n", env->dmmu.tag_access, env->dmmu.tsb_tag_target);
    if ((env->lsu & DMMU_E) == 0) {
        qemu_printf("DMMU disabled\n");
    } else {
        qemu_printf("DMMU dump\n");
        for (i = 0; i < 64; i++) {
            switch (TTE_PGSIZE(env->dtlb[i].tte)) {
            default:
            case 0x0:
                mask = "  8k";
                break;
            case 0x1:
                mask = " 64k";
                break;
            case 0x2:
                mask = "512k";
                break;
            case 0x3:
                mask = "  4M";
                break;
            }
            if (TTE_IS_VALID(env->dtlb[i].tte)) {
                qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
                            ", %s, %s, %s, %s, ie %s, ctx %" PRId64 " %s\n",
                            i,
                            env->dtlb[i].tag & (uint64_t)~0x1fffULL,
                            TTE_PA(env->dtlb[i].tte),
                            mask,
                            TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
                            TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
                            TTE_IS_LOCKED(env->dtlb[i].tte) ?
                            "locked" : "unlocked",
                            TTE_IS_IE(env->dtlb[i].tte) ?
                            "yes" : "no",
                            env->dtlb[i].tag & (uint64_t)0x1fffULL,
                            TTE_IS_GLOBAL(env->dtlb[i].tte) ?
                            "global" : "local");
            }
        }
    }
    if ((env->lsu & IMMU_E) == 0) {
        qemu_printf("IMMU disabled\n");
    } else {
        qemu_printf("IMMU dump\n");
        for (i = 0; i < 64; i++) {
            switch (TTE_PGSIZE(env->itlb[i].tte)) {
            default:
            case 0x0:
                mask = "  8k";
                break;
            case 0x1:
                mask = " 64k";
                break;
            case 0x2:
                mask = "512k";
                break;
            case 0x3:
                mask = "  4M";
                break;
            }
            if (TTE_IS_VALID(env->itlb[i].tte)) {
                qemu_printf("[%02u] VA: %" PRIx64 ", PA: %llx"
                            ", %s, %s, %s, ctx %" PRId64 " %s\n",
                            i,
                            env->itlb[i].tag & (uint64_t)~0x1fffULL,
                            TTE_PA(env->itlb[i].tte),
                            mask,
                            TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
                            TTE_IS_LOCKED(env->itlb[i].tte) ?
                            "locked" : "unlocked",
                            env->itlb[i].tag & (uint64_t)0x1fffULL,
                            TTE_IS_GLOBAL(env->itlb[i].tte) ?
                            "global" : "local");
            }
        }
    }
}

#endif /* TARGET_SPARC64 */

static int cpu_sparc_get_phys_page(CPUSPARCState *env, hwaddr *phys,
                                   target_ulong addr, int rw, int mmu_idx)
{
    CPUTLBEntryFull full = {};
    int access_index, ret;

    ret = get_physical_address(env, &full, &access_index, addr, rw, mmu_idx);
    if (ret == 0) {
        *phys = full.phys_addr;
    }
    return ret;
}

#if defined(TARGET_SPARC64)
hwaddr cpu_get_phys_page_nofault(CPUSPARCState *env, target_ulong addr,
                                           int mmu_idx)
{
    hwaddr phys_addr;

    if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
        return -1;
    }
    return phys_addr;
}
#endif

hwaddr sparc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;
    hwaddr phys_addr;
    int mmu_idx = cpu_mmu_index(cs, false);

    if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
        if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
            return -1;
        }
    }
    return phys_addr;
}

G_NORETURN void sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
                                              MMUAccessType access_type,
                                              int mmu_idx,
                                              uintptr_t retaddr)
{
    SPARCCPU *cpu = SPARC_CPU(cs);
    CPUSPARCState *env = &cpu->env;

#ifdef TARGET_SPARC64
    env->dmmu.sfsr = build_sfsr(env, mmu_idx, access_type);
    env->dmmu.sfar = addr;
#else
    env->mmuregs[4] = addr;
#endif

    cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
}