aboutsummaryrefslogtreecommitdiff
path: root/target/riscv/crypto_helper.c
blob: 99d85a618843e87e4ba9198d45c5863b0a291c47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/*
 * RISC-V Crypto Emulation Helpers for QEMU.
 *
 * Copyright (c) 2021 Ruibo Lu, luruibo2000@163.com
 * Copyright (c) 2021 Zewen Ye, lustrew@foxmail.com
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "crypto/aes.h"
#include "crypto/aes-round.h"
#include "crypto/sm4.h"

#define AES_XTIME(a) \
    ((a << 1) ^ ((a & 0x80) ? 0x1b : 0))

#define AES_GFMUL(a, b) (( \
    (((b) & 0x1) ? (a) : 0) ^ \
    (((b) & 0x2) ? AES_XTIME(a) : 0) ^ \
    (((b) & 0x4) ? AES_XTIME(AES_XTIME(a)) : 0) ^ \
    (((b) & 0x8) ? AES_XTIME(AES_XTIME(AES_XTIME(a))) : 0)) & 0xFF)

static inline uint32_t aes_mixcolumn_byte(uint8_t x, bool fwd)
{
    uint32_t u;

    if (fwd) {
        u = (AES_GFMUL(x, 3) << 24) | (x << 16) | (x << 8) |
            (AES_GFMUL(x, 2) << 0);
    } else {
        u = (AES_GFMUL(x, 0xb) << 24) | (AES_GFMUL(x, 0xd) << 16) |
            (AES_GFMUL(x, 0x9) << 8) | (AES_GFMUL(x, 0xe) << 0);
    }
    return u;
}

#define sext32_xlen(x) (target_ulong)(int32_t)(x)

static inline target_ulong aes32_operation(target_ulong shamt,
                                           target_ulong rs1, target_ulong rs2,
                                           bool enc, bool mix)
{
    uint8_t si = rs2 >> shamt;
    uint8_t so;
    uint32_t mixed;
    target_ulong res;

    if (enc) {
        so = AES_sbox[si];
        if (mix) {
            mixed = aes_mixcolumn_byte(so, true);
        } else {
            mixed = so;
        }
    } else {
        so = AES_isbox[si];
        if (mix) {
            mixed = aes_mixcolumn_byte(so, false);
        } else {
            mixed = so;
        }
    }
    mixed = rol32(mixed, shamt);
    res = rs1 ^ mixed;

    return sext32_xlen(res);
}

target_ulong HELPER(aes32esmi)(target_ulong rs1, target_ulong rs2,
                               target_ulong shamt)
{
    return aes32_operation(shamt, rs1, rs2, true, true);
}

target_ulong HELPER(aes32esi)(target_ulong rs1, target_ulong rs2,
                              target_ulong shamt)
{
    return aes32_operation(shamt, rs1, rs2, true, false);
}

target_ulong HELPER(aes32dsmi)(target_ulong rs1, target_ulong rs2,
                               target_ulong shamt)
{
    return aes32_operation(shamt, rs1, rs2, false, true);
}

target_ulong HELPER(aes32dsi)(target_ulong rs1, target_ulong rs2,
                              target_ulong shamt)
{
    return aes32_operation(shamt, rs1, rs2, false, false);
}

static const AESState aes_zero = { };

target_ulong HELPER(aes64esm)(target_ulong rs1, target_ulong rs2)
{
    AESState t;

    t.d[HOST_BIG_ENDIAN] = rs1;
    t.d[!HOST_BIG_ENDIAN] = rs2;
    aesenc_SB_SR_MC_AK(&t, &t, &aes_zero, false);
    return t.d[HOST_BIG_ENDIAN];
}

target_ulong HELPER(aes64es)(target_ulong rs1, target_ulong rs2)
{
    AESState t;

    t.d[HOST_BIG_ENDIAN] = rs1;
    t.d[!HOST_BIG_ENDIAN] = rs2;
    aesenc_SB_SR_AK(&t, &t, &aes_zero, false);
    return t.d[HOST_BIG_ENDIAN];
}

target_ulong HELPER(aes64ds)(target_ulong rs1, target_ulong rs2)
{
    AESState t;

    t.d[HOST_BIG_ENDIAN] = rs1;
    t.d[!HOST_BIG_ENDIAN] = rs2;
    aesdec_ISB_ISR_AK(&t, &t, &aes_zero, false);
    return t.d[HOST_BIG_ENDIAN];
}

target_ulong HELPER(aes64dsm)(target_ulong rs1, target_ulong rs2)
{
    AESState t, z = { };

    /*
     * This instruction does not include a round key,
     * so supply a zero to our primitive.
     */
    t.d[HOST_BIG_ENDIAN] = rs1;
    t.d[!HOST_BIG_ENDIAN] = rs2;
    aesdec_ISB_ISR_IMC_AK(&t, &t, &z, false);
    return t.d[HOST_BIG_ENDIAN];
}

target_ulong HELPER(aes64ks2)(target_ulong rs1, target_ulong rs2)
{
    uint64_t RS1 = rs1;
    uint64_t RS2 = rs2;
    uint32_t rs1_hi = RS1 >> 32;
    uint32_t rs2_lo = RS2;
    uint32_t rs2_hi = RS2 >> 32;

    uint32_t r_lo = (rs1_hi ^ rs2_lo);
    uint32_t r_hi = (rs1_hi ^ rs2_lo ^ rs2_hi);
    target_ulong result = ((uint64_t)r_hi << 32) | r_lo;

    return result;
}

target_ulong HELPER(aes64ks1i)(target_ulong rs1, target_ulong rnum)
{
    uint64_t RS1 = rs1;
    static const uint8_t round_consts[10] = {
        0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
    };

    uint8_t enc_rnum = rnum;
    uint32_t temp = (RS1 >> 32) & 0xFFFFFFFF;
    uint8_t rcon_ = 0;
    target_ulong result;

    if (enc_rnum != 0xA) {
        temp = ror32(temp, 8); /* Rotate right by 8 */
        rcon_ = round_consts[enc_rnum];
    }

    temp = ((uint32_t)AES_sbox[(temp >> 24) & 0xFF] << 24) |
           ((uint32_t)AES_sbox[(temp >> 16) & 0xFF] << 16) |
           ((uint32_t)AES_sbox[(temp >> 8) & 0xFF] << 8) |
           ((uint32_t)AES_sbox[(temp >> 0) & 0xFF] << 0);

    temp ^= rcon_;

    result = ((uint64_t)temp << 32) | temp;

    return result;
}

target_ulong HELPER(aes64im)(target_ulong rs1)
{
    AESState t;

    t.d[HOST_BIG_ENDIAN] = rs1;
    t.d[!HOST_BIG_ENDIAN] = 0;
    aesdec_IMC(&t, &t, false);
    return t.d[HOST_BIG_ENDIAN];
}

target_ulong HELPER(sm4ed)(target_ulong rs1, target_ulong rs2,
                           target_ulong shamt)
{
    uint32_t sb_in = (uint8_t)(rs2 >> shamt);
    uint32_t sb_out = (uint32_t)sm4_sbox[sb_in];

    uint32_t x = sb_out ^ (sb_out << 8) ^ (sb_out << 2) ^ (sb_out << 18) ^
                 ((sb_out & 0x3f) << 26) ^ ((sb_out & 0xC0) << 10);

    uint32_t rotl = rol32(x, shamt);

    return sext32_xlen(rotl ^ (uint32_t)rs1);
}

target_ulong HELPER(sm4ks)(target_ulong rs1, target_ulong rs2,
                           target_ulong shamt)
{
    uint32_t sb_in = (uint8_t)(rs2 >> shamt);
    uint32_t sb_out = sm4_sbox[sb_in];

    uint32_t x = sb_out ^ ((sb_out & 0x07) << 29) ^ ((sb_out & 0xFE) << 7) ^
                 ((sb_out & 0x01) << 23) ^ ((sb_out & 0xF8) << 13);

    uint32_t rotl = rol32(x, shamt);

    return sext32_xlen(rotl ^ (uint32_t)rs1);
}
#undef sext32_xlen