aboutsummaryrefslogtreecommitdiff
path: root/target/ppc/mmu-hash64.c
blob: 7899eb2918474a95437c18be17221df10ba7077f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
/*
 *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
 *
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 *  Copyright (c) 2013 David Gibson, IBM Corporation
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "qemu/error-report.h"
#include "qemu/qemu-print.h"
#include "sysemu/hw_accel.h"
#include "kvm_ppc.h"
#include "mmu-hash64.h"
#include "exec/log.h"
#include "hw/hw.h"
#include "mmu-book3s-v3.h"

/* #define DEBUG_SLB */

#ifdef DEBUG_SLB
#  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
#else
#  define LOG_SLB(...) do { } while (0)
#endif

/*
 * SLB handling
 */

static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
{
    CPUPPCState *env = &cpu->env;
    uint64_t esid_256M, esid_1T;
    int n;

    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);

    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;

    for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
        ppc_slb_t *slb = &env->slb[n];

        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
        /*
         * We check for 1T matches on all MMUs here - if the MMU
         * doesn't have 1T segment support, we will have prevented 1T
         * entries from being inserted in the slbmte code.
         */
        if (((slb->esid == esid_256M) &&
             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
            || ((slb->esid == esid_1T) &&
                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
            return slb;
        }
    }

    return NULL;
}

void dump_slb(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    int i;
    uint64_t slbe, slbv;

    cpu_synchronize_state(CPU(cpu));

    qemu_printf("SLB\tESID\t\t\tVSID\n");
    for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
        slbe = env->slb[i].esid;
        slbv = env->slb[i].vsid;
        if (slbe == 0 && slbv == 0) {
            continue;
        }
        qemu_printf("%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
                    i, slbe, slbv);
    }
}

void helper_slbia(CPUPPCState *env)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    int n;

    /* XXX: Warning: slbia never invalidates the first segment */
    for (n = 1; n < cpu->hash64_opts->slb_size; n++) {
        ppc_slb_t *slb = &env->slb[n];

        if (slb->esid & SLB_ESID_V) {
            slb->esid &= ~SLB_ESID_V;
            /*
             * XXX: given the fact that segment size is 256 MB or 1TB,
             *      and we still don't have a tlb_flush_mask(env, n, mask)
             *      in QEMU, we just invalidate all TLBs
             */
            env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
        }
    }
}

static void __helper_slbie(CPUPPCState *env, target_ulong addr,
                           target_ulong global)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    ppc_slb_t *slb;

    slb = slb_lookup(cpu, addr);
    if (!slb) {
        return;
    }

    if (slb->esid & SLB_ESID_V) {
        slb->esid &= ~SLB_ESID_V;

        /*
         * XXX: given the fact that segment size is 256 MB or 1TB,
         *      and we still don't have a tlb_flush_mask(env, n, mask)
         *      in QEMU, we just invalidate all TLBs
         */
        env->tlb_need_flush |=
            (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
    }
}

void helper_slbie(CPUPPCState *env, target_ulong addr)
{
    __helper_slbie(env, addr, false);
}

void helper_slbieg(CPUPPCState *env, target_ulong addr)
{
    __helper_slbie(env, addr, true);
}

int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
                  target_ulong esid, target_ulong vsid)
{
    CPUPPCState *env = &cpu->env;
    ppc_slb_t *slb = &env->slb[slot];
    const PPCHash64SegmentPageSizes *sps = NULL;
    int i;

    if (slot >= cpu->hash64_opts->slb_size) {
        return -1; /* Bad slot number */
    }
    if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
        return -1; /* Reserved bits set */
    }
    if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
        return -1; /* Bad segment size */
    }
    if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
        return -1; /* 1T segment on MMU that doesn't support it */
    }

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];

        if (!sps1->page_shift) {
            break;
        }

        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
            sps = sps1;
            break;
        }
    }

    if (!sps) {
        error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
                     " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
                     slot, esid, vsid);
        return -1;
    }

    slb->esid = esid;
    slb->vsid = vsid;
    slb->sps = sps;

    LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
            " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
            slb->esid, slb->vsid);

    return 0;
}

static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
                             target_ulong *rt)
{
    CPUPPCState *env = &cpu->env;
    int slot = rb & 0xfff;
    ppc_slb_t *slb = &env->slb[slot];

    if (slot >= cpu->hash64_opts->slb_size) {
        return -1;
    }

    *rt = slb->esid;
    return 0;
}

static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
                             target_ulong *rt)
{
    CPUPPCState *env = &cpu->env;
    int slot = rb & 0xfff;
    ppc_slb_t *slb = &env->slb[slot];

    if (slot >= cpu->hash64_opts->slb_size) {
        return -1;
    }

    *rt = slb->vsid;
    return 0;
}

static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
                             target_ulong *rt)
{
    CPUPPCState *env = &cpu->env;
    ppc_slb_t *slb;

    if (!msr_is_64bit(env, env->msr)) {
        rb &= 0xffffffff;
    }
    slb = slb_lookup(cpu, rb);
    if (slb == NULL) {
        *rt = (target_ulong)-1ul;
    } else {
        *rt = slb->vsid;
    }
    return 0;
}

void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                               POWERPC_EXCP_INVAL, GETPC());
    }
}

target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    target_ulong rt = 0;

    if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                               POWERPC_EXCP_INVAL, GETPC());
    }
    return rt;
}

target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    target_ulong rt = 0;

    if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                               POWERPC_EXCP_INVAL, GETPC());
    }
    return rt;
}

target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
    target_ulong rt = 0;

    if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                               POWERPC_EXCP_INVAL, GETPC());
    }
    return rt;
}

/* Check No-Execute or Guarded Storage */
static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
                                              ppc_hash_pte64_t pte)
{
    /* Exec permissions CANNOT take away read or write permissions */
    return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
            PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
}

/* Check Basic Storage Protection */
static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
{
    CPUPPCState *env = &cpu->env;
    unsigned pp, key;
    /*
     * Some pp bit combinations have undefined behaviour, so default
     * to no access in those cases
     */
    int prot = 0;

    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
             : (slb->vsid & SLB_VSID_KS));
    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);

    if (key == 0) {
        switch (pp) {
        case 0x0:
        case 0x1:
        case 0x2:
            prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
            break;

        case 0x3:
        case 0x6:
            prot = PAGE_READ | PAGE_EXEC;
            break;
        }
    } else {
        switch (pp) {
        case 0x0:
        case 0x6:
            break;

        case 0x1:
        case 0x3:
            prot = PAGE_READ | PAGE_EXEC;
            break;

        case 0x2:
            prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
            break;
        }
    }

    return prot;
}

/* Check the instruction access permissions specified in the IAMR */
static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
{
    CPUPPCState *env = &cpu->env;
    int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;

    /*
     * An instruction fetch is permitted if the IAMR bit is 0.
     * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
     * can only take away EXEC permissions not READ or WRITE permissions.
     * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
     * EXEC permissions are allowed.
     */
    return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
                               PAGE_READ | PAGE_WRITE | PAGE_EXEC;
}

static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
{
    CPUPPCState *env = &cpu->env;
    int key, amrbits;
    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;

    /* Only recent MMUs implement Virtual Page Class Key Protection */
    if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
        return prot;
    }

    key = HPTE64_R_KEY(pte.pte1);
    amrbits = (env->spr[SPR_AMR] >> 2 * (31 - key)) & 0x3;

    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
    /*         env->spr[SPR_AMR]); */

    /*
     * A store is permitted if the AMR bit is 0. Remove write
     * protection if it is set.
     */
    if (amrbits & 0x2) {
        prot &= ~PAGE_WRITE;
    }
    /*
     * A load is permitted if the AMR bit is 0. Remove read
     * protection if it is set.
     */
    if (amrbits & 0x1) {
        prot &= ~PAGE_READ;
    }

    switch (env->mmu_model) {
    /*
     * MMU version 2.07 and later support IAMR
     * Check if the IAMR allows the instruction access - it will return
     * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
     * if it does (and prot will be unchanged indicating execution support).
     */
    case POWERPC_MMU_2_07:
    case POWERPC_MMU_3_00:
        prot &= ppc_hash64_iamr_prot(cpu, key);
        break;
    default:
        break;
    }

    return prot;
}

const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
                                             hwaddr ptex, int n)
{
    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
    hwaddr base;
    hwaddr plen = n * HASH_PTE_SIZE_64;
    const ppc_hash_pte64_t *hptes;

    if (cpu->vhyp) {
        PPCVirtualHypervisorClass *vhc =
            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
        return vhc->map_hptes(cpu->vhyp, ptex, n);
    }
    base = ppc_hash64_hpt_base(cpu);

    if (!base) {
        return NULL;
    }

    hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
                              MEMTXATTRS_UNSPECIFIED);
    if (plen < (n * HASH_PTE_SIZE_64)) {
        hw_error("%s: Unable to map all requested HPTEs\n", __func__);
    }
    return hptes;
}

void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
                            hwaddr ptex, int n)
{
    if (cpu->vhyp) {
        PPCVirtualHypervisorClass *vhc =
            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
        vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
        return;
    }

    address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
                        false, n * HASH_PTE_SIZE_64);
}

static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
                                uint64_t pte0, uint64_t pte1)
{
    int i;

    if (!(pte0 & HPTE64_V_LARGE)) {
        if (sps->page_shift != 12) {
            /* 4kiB page in a non 4kiB segment */
            return 0;
        }
        /* Normal 4kiB page */
        return 12;
    }

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const PPCHash64PageSize *ps = &sps->enc[i];
        uint64_t mask;

        if (!ps->page_shift) {
            break;
        }

        if (ps->page_shift == 12) {
            /* L bit is set so this can't be a 4kiB page */
            continue;
        }

        mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;

        if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
            return ps->page_shift;
        }
    }

    return 0; /* Bad page size encoding */
}

static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
{
    /* Insert B into pte0 */
    *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
            ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
             (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));

    /* Remove B from pte1 */
    *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
}


static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
                                     const PPCHash64SegmentPageSizes *sps,
                                     target_ulong ptem,
                                     ppc_hash_pte64_t *pte, unsigned *pshift)
{
    int i;
    const ppc_hash_pte64_t *pteg;
    target_ulong pte0, pte1;
    target_ulong ptex;

    ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
    pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
    if (!pteg) {
        return -1;
    }
    for (i = 0; i < HPTES_PER_GROUP; i++) {
        pte0 = ppc_hash64_hpte0(cpu, pteg, i);
        /*
         * pte0 contains the valid bit and must be read before pte1,
         * otherwise we might see an old pte1 with a new valid bit and
         * thus an inconsistent hpte value
         */
        smp_rmb();
        pte1 = ppc_hash64_hpte1(cpu, pteg, i);

        /* Convert format if necessary */
        if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
            ppc64_v3_new_to_old_hpte(&pte0, &pte1);
        }

        /* This compares V, B, H (secondary) and the AVPN */
        if (HPTE64_V_COMPARE(pte0, ptem)) {
            *pshift = hpte_page_shift(sps, pte0, pte1);
            /*
             * If there is no match, ignore the PTE, it could simply
             * be for a different segment size encoding and the
             * architecture specifies we should not match. Linux will
             * potentially leave behind PTEs for the wrong base page
             * size when demoting segments.
             */
            if (*pshift == 0) {
                continue;
            }
            /*
             * We don't do anything with pshift yet as qemu TLB only
             * deals with 4K pages anyway
             */
            pte->pte0 = pte0;
            pte->pte1 = pte1;
            ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
            return ptex + i;
        }
    }
    ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
    /*
     * We didn't find a valid entry.
     */
    return -1;
}

static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
                                     ppc_slb_t *slb, target_ulong eaddr,
                                     ppc_hash_pte64_t *pte, unsigned *pshift)
{
    CPUPPCState *env = &cpu->env;
    hwaddr hash, ptex;
    uint64_t vsid, epnmask, epn, ptem;
    const PPCHash64SegmentPageSizes *sps = slb->sps;

    /*
     * The SLB store path should prevent any bad page size encodings
     * getting in there, so:
     */
    assert(sps);

    /* If ISL is set in LPCR we need to clamp the page size to 4K */
    if (env->spr[SPR_LPCR] & LPCR_ISL) {
        /* We assume that when using TCG, 4k is first entry of SPS */
        sps = &cpu->hash64_opts->sps[0];
        assert(sps->page_shift == 12);
    }

    epnmask = ~((1ULL << sps->page_shift) - 1);

    if (slb->vsid & SLB_VSID_B) {
        /* 1TB segment */
        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
        hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
    } else {
        /* 256M segment */
        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
        hash = vsid ^ (epn >> sps->page_shift);
    }
    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
    ptem |= HPTE64_V_VALID;

    /* Page address translation */
    qemu_log_mask(CPU_LOG_MMU,
            "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
            " hash " TARGET_FMT_plx "\n",
            ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);

    /* Primary PTEG lookup */
    qemu_log_mask(CPU_LOG_MMU,
            "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
            " hash=" TARGET_FMT_plx "\n",
            ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
            vsid, ptem,  hash);
    ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);

    if (ptex == -1) {
        /* Secondary PTEG lookup */
        ptem |= HPTE64_V_SECONDARY;
        qemu_log_mask(CPU_LOG_MMU,
                "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
                " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
                ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);

        ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
    }

    return ptex;
}

unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
                                          uint64_t pte0, uint64_t pte1)
{
    int i;

    if (!(pte0 & HPTE64_V_LARGE)) {
        return 12;
    }

    /*
     * The encodings in env->sps need to be carefully chosen so that
     * this gives an unambiguous result.
     */
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
        unsigned shift;

        if (!sps->page_shift) {
            break;
        }

        shift = hpte_page_shift(sps, pte0, pte1);
        if (shift) {
            return shift;
        }
    }

    return 0;
}

static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
{
    CPUPPCState *env = &POWERPC_CPU(cs)->env;
    bool vpm;

    if (msr_ir) {
        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
    } else {
        switch (env->mmu_model) {
        case POWERPC_MMU_3_00:
            /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
            vpm = true;
            break;
        default:
            vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
            break;
        }
    }
    if (vpm && !msr_hv) {
        cs->exception_index = POWERPC_EXCP_HISI;
    } else {
        cs->exception_index = POWERPC_EXCP_ISI;
    }
    env->error_code = error_code;
}

static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
{
    CPUPPCState *env = &POWERPC_CPU(cs)->env;
    bool vpm;

    if (msr_dr) {
        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
    } else {
        switch (env->mmu_model) {
        case POWERPC_MMU_3_00:
            /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
            vpm = true;
            break;
        default:
            vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
            break;
        }
    }
    if (vpm && !msr_hv) {
        cs->exception_index = POWERPC_EXCP_HDSI;
        env->spr[SPR_HDAR] = dar;
        env->spr[SPR_HDSISR] = dsisr;
    } else {
        cs->exception_index = POWERPC_EXCP_DSI;
        env->spr[SPR_DAR] = dar;
        env->spr[SPR_DSISR] = dsisr;
   }
    env->error_code = 0;
}


static void ppc_hash64_set_r(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
{
    hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 16;

    if (cpu->vhyp) {
        PPCVirtualHypervisorClass *vhc =
            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
        vhc->hpte_set_r(cpu->vhyp, ptex, pte1);
        return;
    }
    base = ppc_hash64_hpt_base(cpu);


    /* The HW performs a non-atomic byte update */
    stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
}

static void ppc_hash64_set_c(PowerPCCPU *cpu, hwaddr ptex, uint64_t pte1)
{
    hwaddr base, offset = ptex * HASH_PTE_SIZE_64 + 15;

    if (cpu->vhyp) {
        PPCVirtualHypervisorClass *vhc =
            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
        vhc->hpte_set_c(cpu->vhyp, ptex, pte1);
        return;
    }
    base = ppc_hash64_hpt_base(cpu);

    /* The HW performs a non-atomic byte update */
    stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
}

int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
                                int rwx, int mmu_idx)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;
    ppc_slb_t *slb;
    unsigned apshift;
    hwaddr ptex;
    ppc_hash_pte64_t pte;
    int exec_prot, pp_prot, amr_prot, prot;
    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
    hwaddr raddr;

    assert((rwx == 0) || (rwx == 1) || (rwx == 2));

    /*
     * Note on LPCR usage: 970 uses HID4, but our special variant of
     * store_spr copies relevant fields into env->spr[SPR_LPCR].
     * Similarily we filter unimplemented bits when storing into LPCR
     * depending on the MMU version. This code can thus just use the
     * LPCR "as-is".
     */

    /* 1. Handle real mode accesses */
    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
        /*
         * Translation is supposedly "off", but in real mode the top 4
         * effective address bits are (mostly) ignored
         */
        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;

        /* In HV mode, add HRMOR if top EA bit is clear */
        if (msr_hv || !env->has_hv_mode) {
            if (!(eaddr >> 63)) {
                raddr |= env->spr[SPR_HRMOR];
            }
        } else {
            /* Otherwise, check VPM for RMA vs VRMA */
            if (env->spr[SPR_LPCR] & LPCR_VPM0) {
                slb = &env->vrma_slb;
                if (slb->sps) {
                    goto skip_slb_search;
                }
                /* Not much else to do here */
                cs->exception_index = POWERPC_EXCP_MCHECK;
                env->error_code = 0;
                return 1;
            } else if (raddr < env->rmls) {
                /* RMA. Check bounds in RMLS */
                raddr |= env->spr[SPR_RMOR];
            } else {
                /* The access failed, generate the approriate interrupt */
                if (rwx == 2) {
                    ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
                } else {
                    int dsisr = DSISR_PROTFAULT;
                    if (rwx == 1) {
                        dsisr |= DSISR_ISSTORE;
                    }
                    ppc_hash64_set_dsi(cs, eaddr, dsisr);
                }
                return 1;
            }
        }
        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
                     TARGET_PAGE_SIZE);
        return 0;
    }

    /* 2. Translation is on, so look up the SLB */
    slb = slb_lookup(cpu, eaddr);
    if (!slb) {
        /* No entry found, check if in-memory segment tables are in use */
        if (ppc64_use_proc_tbl(cpu)) {
            /* TODO - Unsupported */
            error_report("Segment Table Support Unimplemented");
            exit(1);
        }
        /* Segment still not found, generate the appropriate interrupt */
        if (rwx == 2) {
            cs->exception_index = POWERPC_EXCP_ISEG;
            env->error_code = 0;
        } else {
            cs->exception_index = POWERPC_EXCP_DSEG;
            env->error_code = 0;
            env->spr[SPR_DAR] = eaddr;
        }
        return 1;
    }

skip_slb_search:

    /* 3. Check for segment level no-execute violation */
    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
        ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
        return 1;
    }

    /* 4. Locate the PTE in the hash table */
    ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
    if (ptex == -1) {
        if (rwx == 2) {
            ppc_hash64_set_isi(cs, SRR1_NOPTE);
        } else {
            int dsisr = DSISR_NOPTE;
            if (rwx == 1) {
                dsisr |= DSISR_ISSTORE;
            }
            ppc_hash64_set_dsi(cs, eaddr, dsisr);
        }
        return 1;
    }
    qemu_log_mask(CPU_LOG_MMU,
                  "found PTE at index %08" HWADDR_PRIx "\n", ptex);

    /* 5. Check access permissions */

    exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
    pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
    amr_prot = ppc_hash64_amr_prot(cpu, pte);
    prot = exec_prot & pp_prot & amr_prot;

    if ((need_prot[rwx] & ~prot) != 0) {
        /* Access right violation */
        qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
        if (rwx == 2) {
            int srr1 = 0;
            if (PAGE_EXEC & ~exec_prot) {
                srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
            } else if (PAGE_EXEC & ~pp_prot) {
                srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
            }
            if (PAGE_EXEC & ~amr_prot) {
                srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
            }
            ppc_hash64_set_isi(cs, srr1);
        } else {
            int dsisr = 0;
            if (need_prot[rwx] & ~pp_prot) {
                dsisr |= DSISR_PROTFAULT;
            }
            if (rwx == 1) {
                dsisr |= DSISR_ISSTORE;
            }
            if (need_prot[rwx] & ~amr_prot) {
                dsisr |= DSISR_AMR;
            }
            ppc_hash64_set_dsi(cs, eaddr, dsisr);
        }
        return 1;
    }

    qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");

    /* 6. Update PTE referenced and changed bits if necessary */

    if (!(pte.pte1 & HPTE64_R_R)) {
        ppc_hash64_set_r(cpu, ptex, pte.pte1);
    }
    if (!(pte.pte1 & HPTE64_R_C)) {
        if (rwx == 1) {
            ppc_hash64_set_c(cpu, ptex, pte.pte1);
        } else {
            /*
             * Treat the page as read-only for now, so that a later write
             * will pass through this function again to set the C bit
             */
            prot &= ~PAGE_WRITE;
        }
    }

    /* 7. Determine the real address from the PTE */

    raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);

    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
                 prot, mmu_idx, 1ULL << apshift);

    return 0;
}

hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
{
    CPUPPCState *env = &cpu->env;
    ppc_slb_t *slb;
    hwaddr ptex, raddr;
    ppc_hash_pte64_t pte;
    unsigned apshift;

    /* Handle real mode */
    if (msr_dr == 0) {
        /* In real mode the top 4 effective address bits are ignored */
        raddr = addr & 0x0FFFFFFFFFFFFFFFULL;

        /* In HV mode, add HRMOR if top EA bit is clear */
        if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
            return raddr | env->spr[SPR_HRMOR];
        }

        /* Otherwise, check VPM for RMA vs VRMA */
        if (env->spr[SPR_LPCR] & LPCR_VPM0) {
            slb = &env->vrma_slb;
            if (!slb->sps) {
                return -1;
            }
        } else if (raddr < env->rmls) {
            /* RMA. Check bounds in RMLS */
            return raddr | env->spr[SPR_RMOR];
        } else {
            return -1;
        }
    } else {
        slb = slb_lookup(cpu, addr);
        if (!slb) {
            return -1;
        }
    }

    ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
    if (ptex == -1) {
        return -1;
    }

    return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
        & TARGET_PAGE_MASK;
}

void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
                               target_ulong pte0, target_ulong pte1)
{
    /*
     * XXX: given the fact that there are too many segments to
     * invalidate, and we still don't have a tlb_flush_mask(env, n,
     * mask) in QEMU, we just invalidate all TLBs
     */
    cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
}

static void ppc_hash64_update_rmls(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    uint64_t lpcr = env->spr[SPR_LPCR];

    /*
     * This is the full 4 bits encoding of POWER8. Previous
     * CPUs only support a subset of these but the filtering
     * is done when writing LPCR
     */
    switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
    case 0x8: /* 32MB */
        env->rmls = 0x2000000ull;
        break;
    case 0x3: /* 64MB */
        env->rmls = 0x4000000ull;
        break;
    case 0x7: /* 128MB */
        env->rmls = 0x8000000ull;
        break;
    case 0x4: /* 256MB */
        env->rmls = 0x10000000ull;
        break;
    case 0x2: /* 1GB */
        env->rmls = 0x40000000ull;
        break;
    case 0x1: /* 16GB */
        env->rmls = 0x400000000ull;
        break;
    default:
        /* What to do here ??? */
        env->rmls = 0;
    }
}

static void ppc_hash64_update_vrma(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    const PPCHash64SegmentPageSizes *sps = NULL;
    target_ulong esid, vsid, lpcr;
    ppc_slb_t *slb = &env->vrma_slb;
    uint32_t vrmasd;
    int i;

    /* First clear it */
    slb->esid = slb->vsid = 0;
    slb->sps = NULL;

    /* Is VRMA enabled ? */
    lpcr = env->spr[SPR_LPCR];
    if (!(lpcr & LPCR_VPM0)) {
        return;
    }

    /*
     * Make one up. Mostly ignore the ESID which will not be needed
     * for translation
     */
    vsid = SLB_VSID_VRMA;
    vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
    vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
    esid = SLB_ESID_V;

    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
        const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];

        if (!sps1->page_shift) {
            break;
        }

        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
            sps = sps1;
            break;
        }
    }

    if (!sps) {
        error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
                     " vsid 0x"TARGET_FMT_lx, esid, vsid);
        return;
    }

    slb->vsid = vsid;
    slb->esid = esid;
    slb->sps = sps;
}

void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
{
    CPUPPCState *env = &cpu->env;
    uint64_t lpcr = 0;

    /* Filter out bits */
    switch (env->mmu_model) {
    case POWERPC_MMU_64B: /* 970 */
        if (val & 0x40) {
            lpcr |= LPCR_LPES0;
        }
        if (val & 0x8000000000000000ull) {
            lpcr |= LPCR_LPES1;
        }
        if (val & 0x20) {
            lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
        }
        if (val & 0x4000000000000000ull) {
            lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
        }
        if (val & 0x2000000000000000ull) {
            lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
        }
        env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;

        /*
         * XXX We could also write LPID from HID4 here
         * but since we don't tag any translation on it
         * it doesn't actually matter
         *
         * XXX For proper emulation of 970 we also need
         * to dig HRMOR out of HID5
         */
        break;
    case POWERPC_MMU_2_03: /* P5p */
        lpcr = val & (LPCR_RMLS | LPCR_ILE |
                      LPCR_LPES0 | LPCR_LPES1 |
                      LPCR_RMI | LPCR_HDICE);
        break;
    case POWERPC_MMU_2_06: /* P7 */
        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
                      LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
                      LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
                      LPCR_MER | LPCR_TC |
                      LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
        break;
    case POWERPC_MMU_2_07: /* P8 */
        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
                      LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
                      LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
                      LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
                      LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
        break;
    case POWERPC_MMU_3_00: /* P9 */
        lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
                      (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
                      LPCR_UPRT | LPCR_EVIRT | LPCR_ONL | LPCR_HR | LPCR_LD |
                      (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
                      LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
                      LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
        /*
         * If we have a virtual hypervisor, we need to bring back RMLS. It
         * doesn't exist on an actual P9 but that's all we know how to
         * configure with softmmu at the moment
         */
        if (cpu->vhyp) {
            lpcr |= (val & LPCR_RMLS);
        }
        break;
    default:
        ;
    }
    env->spr[SPR_LPCR] = lpcr;
    ppc_hash64_update_rmls(cpu);
    ppc_hash64_update_vrma(cpu);
}

void helper_store_lpcr(CPUPPCState *env, target_ulong val)
{
    PowerPCCPU *cpu = ppc_env_get_cpu(env);

    ppc_store_lpcr(cpu, val);
}

void ppc_hash64_init(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);

    if (!pcc->hash64_opts) {
        assert(!(env->mmu_model & POWERPC_MMU_64));
        return;
    }

    cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
}

void ppc_hash64_finalize(PowerPCCPU *cpu)
{
    g_free(cpu->hash64_opts);
}

const PPCHash64Options ppc_hash64_opts_basic = {
    .flags = 0,
    .slb_size = 64,
    .sps = {
        { .page_shift = 12, /* 4K */
          .slb_enc = 0,
          .enc = { { .page_shift = 12, .pte_enc = 0 } }
        },
        { .page_shift = 24, /* 16M */
          .slb_enc = 0x100,
          .enc = { { .page_shift = 24, .pte_enc = 0 } }
        },
    },
};

const PPCHash64Options ppc_hash64_opts_POWER7 = {
    .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
    .slb_size = 32,
    .sps = {
        {
            .page_shift = 12, /* 4K */
            .slb_enc = 0,
            .enc = { { .page_shift = 12, .pte_enc = 0 },
                     { .page_shift = 16, .pte_enc = 0x7 },
                     { .page_shift = 24, .pte_enc = 0x38 }, },
        },
        {
            .page_shift = 16, /* 64K */
            .slb_enc = SLB_VSID_64K,
            .enc = { { .page_shift = 16, .pte_enc = 0x1 },
                     { .page_shift = 24, .pte_enc = 0x8 }, },
        },
        {
            .page_shift = 24, /* 16M */
            .slb_enc = SLB_VSID_16M,
            .enc = { { .page_shift = 24, .pte_enc = 0 }, },
        },
        {
            .page_shift = 34, /* 16G */
            .slb_enc = SLB_VSID_16G,
            .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
        },
    }
};

void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu,
                                 bool (*cb)(void *, uint32_t, uint32_t),
                                 void *opaque)
{
    PPCHash64Options *opts = cpu->hash64_opts;
    int i;
    int n = 0;
    bool ci_largepage = false;

    assert(opts);

    n = 0;
    for (i = 0; i < ARRAY_SIZE(opts->sps); i++) {
        PPCHash64SegmentPageSizes *sps = &opts->sps[i];
        int j;
        int m = 0;

        assert(n <= i);

        if (!sps->page_shift) {
            break;
        }

        for (j = 0; j < ARRAY_SIZE(sps->enc); j++) {
            PPCHash64PageSize *ps = &sps->enc[j];

            assert(m <= j);
            if (!ps->page_shift) {
                break;
            }

            if (cb(opaque, sps->page_shift, ps->page_shift)) {
                if (ps->page_shift >= 16) {
                    ci_largepage = true;
                }
                sps->enc[m++] = *ps;
            }
        }

        /* Clear rest of the row */
        for (j = m; j < ARRAY_SIZE(sps->enc); j++) {
            memset(&sps->enc[j], 0, sizeof(sps->enc[j]));
        }

        if (m) {
            n++;
        }
    }

    /* Clear the rest of the table */
    for (i = n; i < ARRAY_SIZE(opts->sps); i++) {
        memset(&opts->sps[i], 0, sizeof(opts->sps[i]));
    }

    if (!ci_largepage) {
        opts->flags &= ~PPC_HASH64_CI_LARGEPAGE;
    }
}