aboutsummaryrefslogtreecommitdiff
path: root/target/mips/helper.c
blob: 68e44df4da537b04881346f9ae097de43a434972 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
/*
 *  MIPS emulation helpers for qemu.
 *
 *  Copyright (c) 2004-2005 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/osdep.h"

#include "cpu.h"
#include "internal.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/log.h"
#include "hw/mips/cpudevs.h"
#include "qapi/qapi-commands-target.h"

enum {
    TLBRET_XI = -6,
    TLBRET_RI = -5,
    TLBRET_DIRTY = -4,
    TLBRET_INVALID = -3,
    TLBRET_NOMATCH = -2,
    TLBRET_BADADDR = -1,
    TLBRET_MATCH = 0
};

#if !defined(CONFIG_USER_ONLY)

/* no MMU emulation */
int no_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
                        target_ulong address, int rw, int access_type)
{
    *physical = address;
    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    return TLBRET_MATCH;
}

/* fixed mapping MMU emulation */
int fixed_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
                           target_ulong address, int rw, int access_type)
{
    if (address <= (int32_t)0x7FFFFFFFUL) {
        if (!(env->CP0_Status & (1 << CP0St_ERL)))
            *physical = address + 0x40000000UL;
        else
            *physical = address;
    } else if (address <= (int32_t)0xBFFFFFFFUL)
        *physical = address & 0x1FFFFFFF;
    else
        *physical = address;

    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    return TLBRET_MATCH;
}

/* MIPS32/MIPS64 R4000-style MMU emulation */
int r4k_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
                     target_ulong address, int rw, int access_type)
{
    uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
    int i;

    for (i = 0; i < env->tlb->tlb_in_use; i++) {
        r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
        /* 1k pages are not supported. */
        target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
        target_ulong tag = address & ~mask;
        target_ulong VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
        tag &= env->SEGMask;
#endif

        /* Check ASID, virtual page number & size */
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
            /* TLB match */
            int n = !!(address & mask & ~(mask >> 1));
            /* Check access rights */
            if (!(n ? tlb->V1 : tlb->V0)) {
                return TLBRET_INVALID;
            }
            if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
                return TLBRET_XI;
            }
            if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
                return TLBRET_RI;
            }
            if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
                *physical = tlb->PFN[n] | (address & (mask >> 1));
                *prot = PAGE_READ;
                if (n ? tlb->D1 : tlb->D0)
                    *prot |= PAGE_WRITE;
                if (!(n ? tlb->XI1 : tlb->XI0)) {
                    *prot |= PAGE_EXEC;
                }
                return TLBRET_MATCH;
            }
            return TLBRET_DIRTY;
        }
    }
    return TLBRET_NOMATCH;
}

static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
{
    /*
     * Interpret access control mode and mmu_idx.
     *           AdE?     TLB?
     *      AM  K S U E  K S U E
     * UK    0  0 1 1 0  0 - - 0
     * MK    1  0 1 1 0  1 - - !eu
     * MSK   2  0 0 1 0  1 1 - !eu
     * MUSK  3  0 0 0 0  1 1 1 !eu
     * MUSUK 4  0 0 0 0  0 1 1 0
     * USK   5  0 0 1 0  0 0 - 0
     * -     6  - - - -  - - - -
     * UUSK  7  0 0 0 0  0 0 0 0
     */
    int32_t adetlb_mask;

    switch (mmu_idx) {
    case 3 /* ERL */:
        /* If EU is set, always unmapped */
        if (eu) {
            return 0;
        }
        /* fall through */
    case MIPS_HFLAG_KM:
        /* Never AdE, TLB mapped if AM={1,2,3} */
        adetlb_mask = 0x70000000;
        goto check_tlb;

    case MIPS_HFLAG_SM:
        /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
        adetlb_mask = 0xc0380000;
        goto check_ade;

    case MIPS_HFLAG_UM:
        /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
        adetlb_mask = 0xe4180000;
        /* fall through */
    check_ade:
        /* does this AM cause AdE in current execution mode */
        if ((adetlb_mask << am) < 0) {
            return TLBRET_BADADDR;
        }
        adetlb_mask <<= 8;
        /* fall through */
    check_tlb:
        /* is this AM mapped in current execution mode */
        return ((adetlb_mask << am) < 0);
    default:
        assert(0);
        return TLBRET_BADADDR;
    };
}

static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
                                    int *prot, target_ulong real_address,
                                    int rw, int access_type, int mmu_idx,
                                    unsigned int am, bool eu,
                                    target_ulong segmask,
                                    hwaddr physical_base)
{
    int mapped = is_seg_am_mapped(am, eu, mmu_idx);

    if (mapped < 0) {
        /* is_seg_am_mapped can report TLBRET_BADADDR */
        return mapped;
    } else if (mapped) {
        /* The segment is TLB mapped */
        return env->tlb->map_address(env, physical, prot, real_address, rw,
                                     access_type);
    } else {
        /* The segment is unmapped */
        *physical = physical_base | (real_address & segmask);
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        return TLBRET_MATCH;
    }
}

static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
                                       int *prot, target_ulong real_address,
                                       int rw, int access_type, int mmu_idx,
                                       uint16_t segctl, target_ulong segmask)
{
    unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
    bool eu = (segctl >> CP0SC_EU) & 1;
    hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;

    return get_seg_physical_address(env, physical, prot, real_address, rw,
                                    access_type, mmu_idx, am, eu, segmask,
                                    pa & ~(hwaddr)segmask);
}

static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
                                int *prot, target_ulong real_address,
                                int rw, int access_type, int mmu_idx)
{
    /* User mode can only access useg/xuseg */
#if defined(TARGET_MIPS64)
    int user_mode = mmu_idx == MIPS_HFLAG_UM;
    int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
    int kernel_mode = !user_mode && !supervisor_mode;
    int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
    int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
    int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
#endif
    int ret = TLBRET_MATCH;
    /* effective address (modified for KVM T&E kernel segments) */
    target_ulong address = real_address;

#define USEG_LIMIT      ((target_ulong)(int32_t)0x7FFFFFFFUL)
#define KSEG0_BASE      ((target_ulong)(int32_t)0x80000000UL)
#define KSEG1_BASE      ((target_ulong)(int32_t)0xA0000000UL)
#define KSEG2_BASE      ((target_ulong)(int32_t)0xC0000000UL)
#define KSEG3_BASE      ((target_ulong)(int32_t)0xE0000000UL)

#define KVM_KSEG0_BASE  ((target_ulong)(int32_t)0x40000000UL)
#define KVM_KSEG2_BASE  ((target_ulong)(int32_t)0x60000000UL)

    if (mips_um_ksegs_enabled()) {
        /* KVM T&E adds guest kernel segments in useg */
        if (real_address >= KVM_KSEG0_BASE) {
            if (real_address < KVM_KSEG2_BASE) {
                /* kseg0 */
                address += KSEG0_BASE - KVM_KSEG0_BASE;
            } else if (real_address <= USEG_LIMIT) {
                /* kseg2/3 */
                address += KSEG2_BASE - KVM_KSEG2_BASE;
            }
        }
    }

    if (address <= USEG_LIMIT) {
        /* useg */
        uint16_t segctl;

        if (address >= 0x40000000UL) {
            segctl = env->CP0_SegCtl2;
        } else {
            segctl = env->CP0_SegCtl2 >> 16;
        }
        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
                                          access_type, mmu_idx, segctl,
                                          0x3FFFFFFF);
#if defined(TARGET_MIPS64)
    } else if (address < 0x4000000000000000ULL) {
        /* xuseg */
        if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
            ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
        } else {
            ret = TLBRET_BADADDR;
        }
    } else if (address < 0x8000000000000000ULL) {
        /* xsseg */
        if ((supervisor_mode || kernel_mode) &&
            SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
            ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
        } else {
            ret = TLBRET_BADADDR;
        }
    } else if (address < 0xC000000000000000ULL) {
        /* xkphys */
        if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
            /* KX/SX/UX bit to check for each xkphys EVA access mode */
            static const uint8_t am_ksux[8] = {
                [CP0SC_AM_UK]    = (1u << CP0St_KX),
                [CP0SC_AM_MK]    = (1u << CP0St_KX),
                [CP0SC_AM_MSK]   = (1u << CP0St_SX),
                [CP0SC_AM_MUSK]  = (1u << CP0St_UX),
                [CP0SC_AM_MUSUK] = (1u << CP0St_UX),
                [CP0SC_AM_USK]   = (1u << CP0St_SX),
                [6]              = (1u << CP0St_KX),
                [CP0SC_AM_UUSK]  = (1u << CP0St_UX),
            };
            unsigned int am = CP0SC_AM_UK;
            unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;

            if (xr & (1 << ((address >> 59) & 0x7))) {
                am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
            }
            /* Does CP0_Status.KX/SX/UX permit the access mode (am) */
            if (env->CP0_Status & am_ksux[am]) {
                ret = get_seg_physical_address(env, physical, prot,
                                               real_address, rw, access_type,
                                               mmu_idx, am, false, env->PAMask,
                                               0);
            } else {
                ret = TLBRET_BADADDR;
            }
        } else {
            ret = TLBRET_BADADDR;
        }
    } else if (address < 0xFFFFFFFF80000000ULL) {
        /* xkseg */
        if (kernel_mode && KX &&
            address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
            ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
        } else {
            ret = TLBRET_BADADDR;
        }
#endif
    } else if (address < KSEG1_BASE) {
        /* kseg0 */
        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
                                          access_type, mmu_idx,
                                          env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
    } else if (address < KSEG2_BASE) {
        /* kseg1 */
        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
                                          access_type, mmu_idx,
                                          env->CP0_SegCtl1, 0x1FFFFFFF);
    } else if (address < KSEG3_BASE) {
        /* sseg (kseg2) */
        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
                                          access_type, mmu_idx,
                                          env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
    } else {
        /* kseg3 */
        /* XXX: debug segment is not emulated */
        ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
                                          access_type, mmu_idx,
                                          env->CP0_SegCtl0, 0x1FFFFFFF);
    }
    return ret;
}

void cpu_mips_tlb_flush(CPUMIPSState *env)
{
    MIPSCPU *cpu = mips_env_get_cpu(env);

    /* Flush qemu's TLB and discard all shadowed entries.  */
    tlb_flush(CPU(cpu));
    env->tlb->tlb_in_use = env->tlb->nb_tlb;
}

/* Called for updates to CP0_Status.  */
void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
{
    int32_t tcstatus, *tcst;
    uint32_t v = cpu->CP0_Status;
    uint32_t cu, mx, asid, ksu;
    uint32_t mask = ((1 << CP0TCSt_TCU3)
                       | (1 << CP0TCSt_TCU2)
                       | (1 << CP0TCSt_TCU1)
                       | (1 << CP0TCSt_TCU0)
                       | (1 << CP0TCSt_TMX)
                       | (3 << CP0TCSt_TKSU)
                       | (0xff << CP0TCSt_TASID));

    cu = (v >> CP0St_CU0) & 0xf;
    mx = (v >> CP0St_MX) & 0x1;
    ksu = (v >> CP0St_KSU) & 0x3;
    asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;

    tcstatus = cu << CP0TCSt_TCU0;
    tcstatus |= mx << CP0TCSt_TMX;
    tcstatus |= ksu << CP0TCSt_TKSU;
    tcstatus |= asid;

    if (tc == cpu->current_tc) {
        tcst = &cpu->active_tc.CP0_TCStatus;
    } else {
        tcst = &cpu->tcs[tc].CP0_TCStatus;
    }

    *tcst &= ~mask;
    *tcst |= tcstatus;
    compute_hflags(cpu);
}

void cpu_mips_store_status(CPUMIPSState *env, target_ulong val)
{
    uint32_t mask = env->CP0_Status_rw_bitmask;
    target_ulong old = env->CP0_Status;

    if (env->insn_flags & ISA_MIPS32R6) {
        bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3;
#if defined(TARGET_MIPS64)
        uint32_t ksux = (1 << CP0St_KX) & val;
        ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */
        ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */
        val = (val & ~(7 << CP0St_UX)) | ksux;
#endif
        if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) {
            mask &= ~(3 << CP0St_KSU);
        }
        mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val);
    }

    env->CP0_Status = (old & ~mask) | (val & mask);
#if defined(TARGET_MIPS64)
    if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) {
        /* Access to at least one of the 64-bit segments has been disabled */
        tlb_flush(CPU(mips_env_get_cpu(env)));
    }
#endif
    if (env->CP0_Config3 & (1 << CP0C3_MT)) {
        sync_c0_status(env, env, env->current_tc);
    } else {
        compute_hflags(env);
    }
}

void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val)
{
    uint32_t mask = 0x00C00300;
    uint32_t old = env->CP0_Cause;
    int i;

    if (env->insn_flags & ISA_MIPS32R2) {
        mask |= 1 << CP0Ca_DC;
    }
    if (env->insn_flags & ISA_MIPS32R6) {
        mask &= ~((1 << CP0Ca_WP) & val);
    }

    env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask);

    if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
        if (env->CP0_Cause & (1 << CP0Ca_DC)) {
            cpu_mips_stop_count(env);
        } else {
            cpu_mips_start_count(env);
        }
    }

    /* Set/reset software interrupts */
    for (i = 0 ; i < 2 ; i++) {
        if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
            cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
        }
    }
}
#endif

static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
                                int rw, int tlb_error)
{
    CPUState *cs = CPU(mips_env_get_cpu(env));
    int exception = 0, error_code = 0;

    if (rw == MMU_INST_FETCH) {
        error_code |= EXCP_INST_NOTAVAIL;
    }

    switch (tlb_error) {
    default:
    case TLBRET_BADADDR:
        /* Reference to kernel address from user mode or supervisor mode */
        /* Reference to supervisor address from user mode */
        if (rw == MMU_DATA_STORE) {
            exception = EXCP_AdES;
        } else {
            exception = EXCP_AdEL;
        }
        break;
    case TLBRET_NOMATCH:
        /* No TLB match for a mapped address */
        if (rw == MMU_DATA_STORE) {
            exception = EXCP_TLBS;
        } else {
            exception = EXCP_TLBL;
        }
        error_code |= EXCP_TLB_NOMATCH;
        break;
    case TLBRET_INVALID:
        /* TLB match with no valid bit */
        if (rw == MMU_DATA_STORE) {
            exception = EXCP_TLBS;
        } else {
            exception = EXCP_TLBL;
        }
        break;
    case TLBRET_DIRTY:
        /* TLB match but 'D' bit is cleared */
        exception = EXCP_LTLBL;
        break;
    case TLBRET_XI:
        /* Execute-Inhibit Exception */
        if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
            exception = EXCP_TLBXI;
        } else {
            exception = EXCP_TLBL;
        }
        break;
    case TLBRET_RI:
        /* Read-Inhibit Exception */
        if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
            exception = EXCP_TLBRI;
        } else {
            exception = EXCP_TLBL;
        }
        break;
    }
    /* Raise exception */
    if (!(env->hflags & MIPS_HFLAG_DM)) {
        env->CP0_BadVAddr = address;
    }
    env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
                       ((address >> 9) & 0x007ffff0);
    env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
                       (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
                       (address & (TARGET_PAGE_MASK << 1));
#if defined(TARGET_MIPS64)
    env->CP0_EntryHi &= env->SEGMask;
    env->CP0_XContext =
        /* PTEBase */   (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) |
        /* R */         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |
        /* BadVPN2 */   (extract64(address, 13, env->SEGBITS - 13) << 4);
#endif
    cs->exception_index = exception;
    env->error_code = error_code;
}

#if !defined(CONFIG_USER_ONLY)
hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
    MIPSCPU *cpu = MIPS_CPU(cs);
    CPUMIPSState *env = &cpu->env;
    hwaddr phys_addr;
    int prot;

    if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT,
                             cpu_mmu_index(env, false)) != 0) {
        return -1;
    }
    return phys_addr;
}
#endif

#if !defined(CONFIG_USER_ONLY)
#if !defined(TARGET_MIPS64)

/*
 * Perform hardware page table walk
 *
 * Memory accesses are performed using the KERNEL privilege level.
 * Synchronous exceptions detected on memory accesses cause a silent exit
 * from page table walking, resulting in a TLB or XTLB Refill exception.
 *
 * Implementations are not required to support page table walk memory
 * accesses from mapped memory regions. When an unsupported access is
 * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
 * exception.
 *
 * Note that if an exception is caused by AddressTranslation or LoadMemory
 * functions, the exception is not taken, a silent exit is taken,
 * resulting in a TLB or XTLB Refill exception.
 */

static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
        uint64_t *pte)
{
    if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
        return false;
    }
    if (entry_size == 64) {
        *pte = cpu_ldq_code(env, vaddr);
    } else {
        *pte = cpu_ldl_code(env, vaddr);
    }
    return true;
}

static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
        int entry_size, int ptei)
{
    uint64_t result = entry;
    uint64_t rixi;
    if (ptei > entry_size) {
        ptei -= 32;
    }
    result >>= (ptei - 2);
    rixi = result & 3;
    result >>= 2;
    result |= rixi << CP0EnLo_XI;
    return result;
}

static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
        int directory_index, bool *huge_page, bool *hgpg_directory_hit,
        uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
{
    int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
    int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
    int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
    int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
    int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
    int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
    int directory_shift = (ptew > 1) ? -1 :
            (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
    int leaf_shift = (ptew > 1) ? -1 :
            (ptew == 1) ? native_shift + 1 : native_shift;
    uint32_t direntry_size = 1 << (directory_shift + 3);
    uint32_t leafentry_size = 1 << (leaf_shift + 3);
    uint64_t entry;
    uint64_t paddr;
    int prot;
    uint64_t lsb = 0;
    uint64_t w = 0;

    if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
                             ACCESS_INT, cpu_mmu_index(env, false)) !=
                             TLBRET_MATCH) {
        /* wrong base address */
        return 0;
    }
    if (!get_pte(env, *vaddr, direntry_size, &entry)) {
        return 0;
    }

    if ((entry & (1 << psn)) && hugepg) {
        *huge_page = true;
        *hgpg_directory_hit = true;
        entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
        w = directory_index - 1;
        if (directory_index & 0x1) {
            /* Generate adjacent page from same PTE for odd TLB page */
            lsb = (1 << w) >> 6;
            *pw_entrylo0 = entry & ~lsb; /* even page */
            *pw_entrylo1 = entry | lsb; /* odd page */
        } else if (dph) {
            int oddpagebit = 1 << leaf_shift;
            uint64_t vaddr2 = *vaddr ^ oddpagebit;
            if (*vaddr & oddpagebit) {
                *pw_entrylo1 = entry;
            } else {
                *pw_entrylo0 = entry;
            }
            if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
                                     ACCESS_INT, cpu_mmu_index(env, false)) !=
                                     TLBRET_MATCH) {
                return 0;
            }
            if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
                return 0;
            }
            entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
            if (*vaddr & oddpagebit) {
                *pw_entrylo0 = entry;
            } else {
                *pw_entrylo1 = entry;
            }
        } else {
            return 0;
        }
        return 1;
    } else {
        *vaddr = entry;
        return 2;
    }
}

static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw,
        int mmu_idx)
{
    int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
    int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
    int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
    int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
    int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;

    /* Initial values */
    bool huge_page = false;
    bool hgpg_bdhit = false;
    bool hgpg_gdhit = false;
    bool hgpg_udhit = false;
    bool hgpg_mdhit = false;

    int32_t pw_pagemask = 0;
    target_ulong pw_entryhi = 0;
    uint64_t pw_entrylo0 = 0;
    uint64_t pw_entrylo1 = 0;

    /* Native pointer size */
    /*For the 32-bit architectures, this bit is fixed to 0.*/
    int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;

    /* Indices from PWField */
    int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
    int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
    int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
    int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
    int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;

    /* Indices computed from faulting address */
    int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
    int uindex = (address >> pf_udw) & ((1 << udw) - 1);
    int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
    int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);

    /* Other HTW configs */
    int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;

    /* HTW Shift values (depend on entry size) */
    int directory_shift = (ptew > 1) ? -1 :
            (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
    int leaf_shift = (ptew > 1) ? -1 :
            (ptew == 1) ? native_shift + 1 : native_shift;

    /* Offsets into tables */
    int goffset = gindex << directory_shift;
    int uoffset = uindex << directory_shift;
    int moffset = mindex << directory_shift;
    int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
    int ptoffset1 = ptoffset0 | (1 << (leaf_shift));

    uint32_t leafentry_size = 1 << (leaf_shift + 3);

    /* Starting address - Page Table Base */
    uint64_t vaddr = env->CP0_PWBase;

    uint64_t dir_entry;
    uint64_t paddr;
    int prot;
    int m;

    if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
        /* walker is unimplemented */
        return false;
    }
    if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
        /* walker is disabled */
        return false;
    }
    if (!(gdw > 0 || udw > 0 || mdw > 0)) {
        /* no structure to walk */
        return false;
    }
    if ((directory_shift == -1) || (leaf_shift == -1)) {
        return false;
    }

    /* Global Directory */
    if (gdw > 0) {
        vaddr |= goffset;
        switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
                               &pw_entrylo0, &pw_entrylo1))
        {
        case 0:
            return false;
        case 1:
            goto refill;
        case 2:
        default:
            break;
        }
    }

    /* Upper directory */
    if (udw > 0) {
        vaddr |= uoffset;
        switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
                               &pw_entrylo0, &pw_entrylo1))
        {
        case 0:
            return false;
        case 1:
            goto refill;
        case 2:
        default:
            break;
        }
    }

    /* Middle directory */
    if (mdw > 0) {
        vaddr |= moffset;
        switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
                               &pw_entrylo0, &pw_entrylo1))
        {
        case 0:
            return false;
        case 1:
            goto refill;
        case 2:
        default:
            break;
        }
    }

    /* Leaf Level Page Table - First half of PTE pair */
    vaddr |= ptoffset0;
    if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
                             ACCESS_INT, cpu_mmu_index(env, false)) !=
                             TLBRET_MATCH) {
        return false;
    }
    if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
        return false;
    }
    dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
    pw_entrylo0 = dir_entry;

    /* Leaf Level Page Table - Second half of PTE pair */
    vaddr |= ptoffset1;
    if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
                             ACCESS_INT, cpu_mmu_index(env, false)) !=
                             TLBRET_MATCH) {
        return false;
    }
    if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
        return false;
    }
    dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
    pw_entrylo1 = dir_entry;

refill:

    m = (1 << pf_ptw) - 1;

    if (huge_page) {
        switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
                hgpg_mdhit)
        {
        case 4:
            m = (1 << pf_gdw) - 1;
            if (pf_gdw & 1) {
                m >>= 1;
            }
            break;
        case 2:
            m = (1 << pf_udw) - 1;
            if (pf_udw & 1) {
                m >>= 1;
            }
            break;
        case 1:
            m = (1 << pf_mdw) - 1;
            if (pf_mdw & 1) {
                m >>= 1;
            }
            break;
        }
    }
    pw_pagemask = m >> 12;
    update_pagemask(env, pw_pagemask << 13, &pw_pagemask);
    pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
    {
        target_ulong tmp_entryhi = env->CP0_EntryHi;
        int32_t tmp_pagemask = env->CP0_PageMask;
        uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
        uint64_t tmp_entrylo1 = env->CP0_EntryLo1;

        env->CP0_EntryHi = pw_entryhi;
        env->CP0_PageMask = pw_pagemask;
        env->CP0_EntryLo0 = pw_entrylo0;
        env->CP0_EntryLo1 = pw_entrylo1;

        /*
         * The hardware page walker inserts a page into the TLB in a manner
         * identical to a TLBWR instruction as executed by the software refill
         * handler.
         */
        r4k_helper_tlbwr(env);

        env->CP0_EntryHi = tmp_entryhi;
        env->CP0_PageMask = tmp_pagemask;
        env->CP0_EntryLo0 = tmp_entrylo0;
        env->CP0_EntryLo1 = tmp_entrylo1;
    }
    return true;
}
#endif
#endif

bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
                       MMUAccessType access_type, int mmu_idx,
                       bool probe, uintptr_t retaddr)
{
    MIPSCPU *cpu = MIPS_CPU(cs);
    CPUMIPSState *env = &cpu->env;
#if !defined(CONFIG_USER_ONLY)
    hwaddr physical;
    int prot;
    int mips_access_type;
#endif
    int ret = TLBRET_BADADDR;

    /* data access */
#if !defined(CONFIG_USER_ONLY)
    /* XXX: put correct access by using cpu_restore_state() correctly */
    mips_access_type = ACCESS_INT;
    ret = get_physical_address(env, &physical, &prot, address,
                               access_type, mips_access_type, mmu_idx);
    switch (ret) {
    case TLBRET_MATCH:
        qemu_log_mask(CPU_LOG_MMU,
                      "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
                      " prot %d\n", __func__, address, physical, prot);
        break;
    default:
        qemu_log_mask(CPU_LOG_MMU,
                      "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
                      ret);
        break;
    }
    if (ret == TLBRET_MATCH) {
        tlb_set_page(cs, address & TARGET_PAGE_MASK,
                     physical & TARGET_PAGE_MASK, prot,
                     mmu_idx, TARGET_PAGE_SIZE);
        return true;
    }
#if !defined(TARGET_MIPS64)
    if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
        /*
         * Memory reads during hardware page table walking are performed
         * as if they were kernel-mode load instructions.
         */
        int mode = (env->hflags & MIPS_HFLAG_KSU);
        bool ret_walker;
        env->hflags &= ~MIPS_HFLAG_KSU;
        ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx);
        env->hflags |= mode;
        if (ret_walker) {
            ret = get_physical_address(env, &physical, &prot, address,
                                       access_type, mips_access_type, mmu_idx);
            if (ret == TLBRET_MATCH) {
                tlb_set_page(cs, address & TARGET_PAGE_MASK,
                             physical & TARGET_PAGE_MASK, prot,
                             mmu_idx, TARGET_PAGE_SIZE);
                return true;
            }
        }
    }
#endif
    if (probe) {
        return false;
    }
#endif

    raise_mmu_exception(env, address, access_type, ret);
    do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
}

#ifndef CONFIG_USER_ONLY
hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, int rw)
{
    hwaddr physical;
    int prot;
    int access_type;
    int ret = 0;

    /* data access */
    access_type = ACCESS_INT;
    ret = get_physical_address(env, &physical, &prot, address, rw, access_type,
                               cpu_mmu_index(env, false));
    if (ret != TLBRET_MATCH) {
        raise_mmu_exception(env, address, rw, ret);
        return -1LL;
    } else {
        return physical;
    }
}

static const char * const excp_names[EXCP_LAST + 1] = {
    [EXCP_RESET] = "reset",
    [EXCP_SRESET] = "soft reset",
    [EXCP_DSS] = "debug single step",
    [EXCP_DINT] = "debug interrupt",
    [EXCP_NMI] = "non-maskable interrupt",
    [EXCP_MCHECK] = "machine check",
    [EXCP_EXT_INTERRUPT] = "interrupt",
    [EXCP_DFWATCH] = "deferred watchpoint",
    [EXCP_DIB] = "debug instruction breakpoint",
    [EXCP_IWATCH] = "instruction fetch watchpoint",
    [EXCP_AdEL] = "address error load",
    [EXCP_AdES] = "address error store",
    [EXCP_TLBF] = "TLB refill",
    [EXCP_IBE] = "instruction bus error",
    [EXCP_DBp] = "debug breakpoint",
    [EXCP_SYSCALL] = "syscall",
    [EXCP_BREAK] = "break",
    [EXCP_CpU] = "coprocessor unusable",
    [EXCP_RI] = "reserved instruction",
    [EXCP_OVERFLOW] = "arithmetic overflow",
    [EXCP_TRAP] = "trap",
    [EXCP_FPE] = "floating point",
    [EXCP_DDBS] = "debug data break store",
    [EXCP_DWATCH] = "data watchpoint",
    [EXCP_LTLBL] = "TLB modify",
    [EXCP_TLBL] = "TLB load",
    [EXCP_TLBS] = "TLB store",
    [EXCP_DBE] = "data bus error",
    [EXCP_DDBL] = "debug data break load",
    [EXCP_THREAD] = "thread",
    [EXCP_MDMX] = "MDMX",
    [EXCP_C2E] = "precise coprocessor 2",
    [EXCP_CACHE] = "cache error",
    [EXCP_TLBXI] = "TLB execute-inhibit",
    [EXCP_TLBRI] = "TLB read-inhibit",
    [EXCP_MSADIS] = "MSA disabled",
    [EXCP_MSAFPE] = "MSA floating point",
};
#endif

target_ulong exception_resume_pc (CPUMIPSState *env)
{
    target_ulong bad_pc;
    target_ulong isa_mode;

    isa_mode = !!(env->hflags & MIPS_HFLAG_M16);
    bad_pc = env->active_tc.PC | isa_mode;
    if (env->hflags & MIPS_HFLAG_BMASK) {
        /* If the exception was raised from a delay slot, come back to
           the jump.  */
        bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
    }

    return bad_pc;
}

#if !defined(CONFIG_USER_ONLY)
static void set_hflags_for_handler (CPUMIPSState *env)
{
    /* Exception handlers are entered in 32-bit mode.  */
    env->hflags &= ~(MIPS_HFLAG_M16);
    /* ...except that microMIPS lets you choose.  */
    if (env->insn_flags & ASE_MICROMIPS) {
        env->hflags |= (!!(env->CP0_Config3
                           & (1 << CP0C3_ISA_ON_EXC))
                        << MIPS_HFLAG_M16_SHIFT);
    }
}

static inline void set_badinstr_registers(CPUMIPSState *env)
{
    if (env->insn_flags & ISA_NANOMIPS32) {
        if (env->CP0_Config3 & (1 << CP0C3_BI)) {
            uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
            if ((instr & 0x10000000) == 0) {
                instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
            }
            env->CP0_BadInstr = instr;

            if ((instr & 0xFC000000) == 0x60000000) {
                instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
                env->CP0_BadInstrX = instr;
            }
        }
        return;
    }

    if (env->hflags & MIPS_HFLAG_M16) {
        /* TODO: add BadInstr support for microMIPS */
        return;
    }
    if (env->CP0_Config3 & (1 << CP0C3_BI)) {
        env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
    }
    if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
        (env->hflags & MIPS_HFLAG_BMASK)) {
        env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
    }
}
#endif

void mips_cpu_do_interrupt(CPUState *cs)
{
#if !defined(CONFIG_USER_ONLY)
    MIPSCPU *cpu = MIPS_CPU(cs);
    CPUMIPSState *env = &cpu->env;
    bool update_badinstr = 0;
    target_ulong offset;
    int cause = -1;
    const char *name;

    if (qemu_loglevel_mask(CPU_LOG_INT)
        && cs->exception_index != EXCP_EXT_INTERRUPT) {
        if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) {
            name = "unknown";
        } else {
            name = excp_names[cs->exception_index];
        }

        qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
                 " %s exception\n",
                 __func__, env->active_tc.PC, env->CP0_EPC, name);
    }
    if (cs->exception_index == EXCP_EXT_INTERRUPT &&
        (env->hflags & MIPS_HFLAG_DM)) {
        cs->exception_index = EXCP_DINT;
    }
    offset = 0x180;
    switch (cs->exception_index) {
    case EXCP_DSS:
        env->CP0_Debug |= 1 << CP0DB_DSS;
        /* Debug single step cannot be raised inside a delay slot and
           resume will always occur on the next instruction
           (but we assume the pc has always been updated during
           code translation). */
        env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
        goto enter_debug_mode;
    case EXCP_DINT:
        env->CP0_Debug |= 1 << CP0DB_DINT;
        goto set_DEPC;
    case EXCP_DIB:
        env->CP0_Debug |= 1 << CP0DB_DIB;
        goto set_DEPC;
    case EXCP_DBp:
        env->CP0_Debug |= 1 << CP0DB_DBp;
        /* Setup DExcCode - SDBBP instruction */
        env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) | 9 << CP0DB_DEC;
        goto set_DEPC;
    case EXCP_DDBS:
        env->CP0_Debug |= 1 << CP0DB_DDBS;
        goto set_DEPC;
    case EXCP_DDBL:
        env->CP0_Debug |= 1 << CP0DB_DDBL;
    set_DEPC:
        env->CP0_DEPC = exception_resume_pc(env);
        env->hflags &= ~MIPS_HFLAG_BMASK;
 enter_debug_mode:
        if (env->insn_flags & ISA_MIPS3) {
            env->hflags |= MIPS_HFLAG_64;
            if (!(env->insn_flags & ISA_MIPS64R6) ||
                env->CP0_Status & (1 << CP0St_KX)) {
                env->hflags &= ~MIPS_HFLAG_AWRAP;
            }
        }
        env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
        env->hflags &= ~(MIPS_HFLAG_KSU);
        /* EJTAG probe trap enable is not implemented... */
        if (!(env->CP0_Status & (1 << CP0St_EXL)))
            env->CP0_Cause &= ~(1U << CP0Ca_BD);
        env->active_tc.PC = env->exception_base + 0x480;
        set_hflags_for_handler(env);
        break;
    case EXCP_RESET:
        cpu_reset(CPU(cpu));
        break;
    case EXCP_SRESET:
        env->CP0_Status |= (1 << CP0St_SR);
        memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
        goto set_error_EPC;
    case EXCP_NMI:
        env->CP0_Status |= (1 << CP0St_NMI);
 set_error_EPC:
        env->CP0_ErrorEPC = exception_resume_pc(env);
        env->hflags &= ~MIPS_HFLAG_BMASK;
        env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
        if (env->insn_flags & ISA_MIPS3) {
            env->hflags |= MIPS_HFLAG_64;
            if (!(env->insn_flags & ISA_MIPS64R6) ||
                env->CP0_Status & (1 << CP0St_KX)) {
                env->hflags &= ~MIPS_HFLAG_AWRAP;
            }
        }
        env->hflags |= MIPS_HFLAG_CP0;
        env->hflags &= ~(MIPS_HFLAG_KSU);
        if (!(env->CP0_Status & (1 << CP0St_EXL)))
            env->CP0_Cause &= ~(1U << CP0Ca_BD);
        env->active_tc.PC = env->exception_base;
        set_hflags_for_handler(env);
        break;
    case EXCP_EXT_INTERRUPT:
        cause = 0;
        if (env->CP0_Cause & (1 << CP0Ca_IV)) {
            uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;

            if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
                offset = 0x200;
            } else {
                uint32_t vector = 0;
                uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;

                if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
                    /* For VEIC mode, the external interrupt controller feeds
                     * the vector through the CP0Cause IP lines.  */
                    vector = pending;
                } else {
                    /* Vectored Interrupts
                     * Mask with Status.IM7-IM0 to get enabled interrupts. */
                    pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
                    /* Find the highest-priority interrupt. */
                    while (pending >>= 1) {
                        vector++;
                    }
                }
                offset = 0x200 + (vector * (spacing << 5));
            }
        }
        goto set_EPC;
    case EXCP_LTLBL:
        cause = 1;
        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
        goto set_EPC;
    case EXCP_TLBL:
        cause = 2;
        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
        if ((env->error_code & EXCP_TLB_NOMATCH) &&
            !(env->CP0_Status & (1 << CP0St_EXL))) {
#if defined(TARGET_MIPS64)
            int R = env->CP0_BadVAddr >> 62;
            int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
            int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;

            if ((R != 0 || UX) && (R != 3 || KX) &&
                (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
                offset = 0x080;
            } else {
#endif
                offset = 0x000;
#if defined(TARGET_MIPS64)
            }
#endif
        }
        goto set_EPC;
    case EXCP_TLBS:
        cause = 3;
        update_badinstr = 1;
        if ((env->error_code & EXCP_TLB_NOMATCH) &&
            !(env->CP0_Status & (1 << CP0St_EXL))) {
#if defined(TARGET_MIPS64)
            int R = env->CP0_BadVAddr >> 62;
            int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
            int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;

            if ((R != 0 || UX) && (R != 3 || KX) &&
                (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
                offset = 0x080;
            } else {
#endif
                offset = 0x000;
#if defined(TARGET_MIPS64)
            }
#endif
        }
        goto set_EPC;
    case EXCP_AdEL:
        cause = 4;
        update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
        goto set_EPC;
    case EXCP_AdES:
        cause = 5;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_IBE:
        cause = 6;
        goto set_EPC;
    case EXCP_DBE:
        cause = 7;
        goto set_EPC;
    case EXCP_SYSCALL:
        cause = 8;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_BREAK:
        cause = 9;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_RI:
        cause = 10;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_CpU:
        cause = 11;
        update_badinstr = 1;
        env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
                         (env->error_code << CP0Ca_CE);
        goto set_EPC;
    case EXCP_OVERFLOW:
        cause = 12;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_TRAP:
        cause = 13;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_MSAFPE:
        cause = 14;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_FPE:
        cause = 15;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_C2E:
        cause = 18;
        goto set_EPC;
    case EXCP_TLBRI:
        cause = 19;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_TLBXI:
        cause = 20;
        goto set_EPC;
    case EXCP_MSADIS:
        cause = 21;
        update_badinstr = 1;
        goto set_EPC;
    case EXCP_MDMX:
        cause = 22;
        goto set_EPC;
    case EXCP_DWATCH:
        cause = 23;
        /* XXX: TODO: manage deferred watch exceptions */
        goto set_EPC;
    case EXCP_MCHECK:
        cause = 24;
        goto set_EPC;
    case EXCP_THREAD:
        cause = 25;
        goto set_EPC;
    case EXCP_DSPDIS:
        cause = 26;
        goto set_EPC;
    case EXCP_CACHE:
        cause = 30;
        offset = 0x100;
 set_EPC:
        if (!(env->CP0_Status & (1 << CP0St_EXL))) {
            env->CP0_EPC = exception_resume_pc(env);
            if (update_badinstr) {
                set_badinstr_registers(env);
            }
            if (env->hflags & MIPS_HFLAG_BMASK) {
                env->CP0_Cause |= (1U << CP0Ca_BD);
            } else {
                env->CP0_Cause &= ~(1U << CP0Ca_BD);
            }
            env->CP0_Status |= (1 << CP0St_EXL);
            if (env->insn_flags & ISA_MIPS3) {
                env->hflags |= MIPS_HFLAG_64;
                if (!(env->insn_flags & ISA_MIPS64R6) ||
                    env->CP0_Status & (1 << CP0St_KX)) {
                    env->hflags &= ~MIPS_HFLAG_AWRAP;
                }
            }
            env->hflags |= MIPS_HFLAG_CP0;
            env->hflags &= ~(MIPS_HFLAG_KSU);
        }
        env->hflags &= ~MIPS_HFLAG_BMASK;
        if (env->CP0_Status & (1 << CP0St_BEV)) {
            env->active_tc.PC = env->exception_base + 0x200;
        } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
                                    env->CP0_Config5 & (1 << CP0C5_CV))) {
            /* Force KSeg1 for cache errors */
            env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
        } else {
            env->active_tc.PC = env->CP0_EBase & ~0xfff;
        }

        env->active_tc.PC += offset;
        set_hflags_for_handler(env);
        env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) | (cause << CP0Ca_EC);
        break;
    default:
        abort();
    }
    if (qemu_loglevel_mask(CPU_LOG_INT)
        && cs->exception_index != EXCP_EXT_INTERRUPT) {
        qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
                 "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
                 __func__, env->active_tc.PC, env->CP0_EPC, cause,
                 env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
                 env->CP0_DEPC);
    }
#endif
    cs->exception_index = EXCP_NONE;
}

bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
    if (interrupt_request & CPU_INTERRUPT_HARD) {
        MIPSCPU *cpu = MIPS_CPU(cs);
        CPUMIPSState *env = &cpu->env;

        if (cpu_mips_hw_interrupts_enabled(env) &&
            cpu_mips_hw_interrupts_pending(env)) {
            /* Raise it */
            cs->exception_index = EXCP_EXT_INTERRUPT;
            env->error_code = 0;
            mips_cpu_do_interrupt(cs);
            return true;
        }
    }
    return false;
}

#if !defined(CONFIG_USER_ONLY)
void r4k_invalidate_tlb (CPUMIPSState *env, int idx, int use_extra)
{
    MIPSCPU *cpu = mips_env_get_cpu(env);
    CPUState *cs;
    r4k_tlb_t *tlb;
    target_ulong addr;
    target_ulong end;
    uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
    target_ulong mask;

    tlb = &env->tlb->mmu.r4k.tlb[idx];
    /* The qemu TLB is flushed when the ASID changes, so no need to
       flush these entries again.  */
    if (tlb->G == 0 && tlb->ASID != ASID) {
        return;
    }

    if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
        /* For tlbwr, we can shadow the discarded entry into
           a new (fake) TLB entry, as long as the guest can not
           tell that it's there.  */
        env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
        env->tlb->tlb_in_use++;
        return;
    }

    /* 1k pages are not supported. */
    mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
    if (tlb->V0) {
        cs = CPU(cpu);
        addr = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
        if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
            addr |= 0x3FFFFF0000000000ULL;
        }
#endif
        end = addr | (mask >> 1);
        while (addr < end) {
            tlb_flush_page(cs, addr);
            addr += TARGET_PAGE_SIZE;
        }
    }
    if (tlb->V1) {
        cs = CPU(cpu);
        addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
#if defined(TARGET_MIPS64)
        if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
            addr |= 0x3FFFFF0000000000ULL;
        }
#endif
        end = addr | mask;
        while (addr - 1 < end) {
            tlb_flush_page(cs, addr);
            addr += TARGET_PAGE_SIZE;
        }
    }
}
#endif

void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
                                          uint32_t exception,
                                          int error_code,
                                          uintptr_t pc)
{
    CPUState *cs = CPU(mips_env_get_cpu(env));

    qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n",
                  __func__, exception, error_code);
    cs->exception_index = exception;
    env->error_code = error_code;

    cpu_loop_exit_restore(cs, pc);
}

static void mips_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_MIPS_CPU));
    info->q_typename = g_strdup(typename);

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_MIPS_CPU, false);
    g_slist_foreach(list, mips_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}