aboutsummaryrefslogtreecommitdiff
path: root/target/m68k/softfloat.c
blob: 9cb141900c5494a759ae98b3716073d44d54b23e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
 * Ported from a work by Andreas Grabher for Previous, NeXT Computer Emulator,
 * derived from NetBSD M68040 FPSP functions,
 * derived from release 2a of the SoftFloat IEC/IEEE Floating-point Arithmetic
 * Package. Those parts of the code (and some later contributions) are
 * provided under that license, as detailed below.
 * It has subsequently been modified by contributors to the QEMU Project,
 * so some portions are provided under:
 *  the SoftFloat-2a license
 *  the BSD license
 *  GPL-v2-or-later
 *
 * Any future contributions to this file will be taken to be licensed under
 * the Softfloat-2a license unless specifically indicated otherwise.
 */

/* Portions of this work are licensed under the terms of the GNU GPL,
 * version 2 or later. See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "softfloat.h"
#include "fpu/softfloat-macros.h"

static floatx80 propagateFloatx80NaNOneArg(floatx80 a, float_status *status)
{
    if (floatx80_is_signaling_nan(a, status)) {
        float_raise(float_flag_invalid, status);
    }

    if (status->default_nan_mode) {
        return floatx80_default_nan(status);
    }

    return floatx80_maybe_silence_nan(a, status);
}

/*----------------------------------------------------------------------------
 | Returns the modulo remainder of the extended double-precision floating-point
 | value `a' with respect to the corresponding value `b'.
 *----------------------------------------------------------------------------*/

floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status)
{
    flag aSign, zSign;
    int32_t aExp, bExp, expDiff;
    uint64_t aSig0, aSig1, bSig;
    uint64_t qTemp, term0, term1;

    aSig0 = extractFloatx80Frac(a);
    aExp = extractFloatx80Exp(a);
    aSign = extractFloatx80Sign(a);
    bSig = extractFloatx80Frac(b);
    bExp = extractFloatx80Exp(b);

    if (aExp == 0x7FFF) {
        if ((uint64_t) (aSig0 << 1)
            || ((bExp == 0x7FFF) && (uint64_t) (bSig << 1))) {
            return propagateFloatx80NaN(a, b, status);
        }
        goto invalid;
    }
    if (bExp == 0x7FFF) {
        if ((uint64_t) (bSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
        return a;
    }
    if (bExp == 0) {
        if (bSig == 0) {
        invalid:
            float_raise(float_flag_invalid, status);
            return floatx80_default_nan(status);
        }
        normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
    }
    if (aExp == 0) {
        if ((uint64_t) (aSig0 << 1) == 0) {
            return a;
        }
        normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
    }
    bSig |= LIT64(0x8000000000000000);
    zSign = aSign;
    expDiff = aExp - bExp;
    aSig1 = 0;
    if (expDiff < 0) {
        return a;
    }
    qTemp = (bSig <= aSig0);
    if (qTemp) {
        aSig0 -= bSig;
    }
    expDiff -= 64;
    while (0 < expDiff) {
        qTemp = estimateDiv128To64(aSig0, aSig1, bSig);
        qTemp = (2 < qTemp) ? qTemp - 2 : 0;
        mul64To128(bSig, qTemp, &term0, &term1);
        sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
        shortShift128Left(aSig0, aSig1, 62, &aSig0, &aSig1);
    }
    expDiff += 64;
    if (0 < expDiff) {
        qTemp = estimateDiv128To64(aSig0, aSig1, bSig);
        qTemp = (2 < qTemp) ? qTemp - 2 : 0;
        qTemp >>= 64 - expDiff;
        mul64To128(bSig, qTemp << (64 - expDiff), &term0, &term1);
        sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
        shortShift128Left(0, bSig, 64 - expDiff, &term0, &term1);
        while (le128(term0, term1, aSig0, aSig1)) {
            ++qTemp;
            sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
        }
    }
    return
        normalizeRoundAndPackFloatx80(
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
}

/*----------------------------------------------------------------------------
 | Returns the mantissa of the extended double-precision floating-point
 | value `a'.
 *----------------------------------------------------------------------------*/

floatx80 floatx80_getman(floatx80 a, float_status *status)
{
    flag aSign;
    int32_t aExp;
    uint64_t aSig;

    aSig = extractFloatx80Frac(a);
    aExp = extractFloatx80Exp(a);
    aSign = extractFloatx80Sign(a);

    if (aExp == 0x7FFF) {
        if ((uint64_t) (aSig << 1)) {
            return propagateFloatx80NaNOneArg(a , status);
        }
        float_raise(float_flag_invalid , status);
        return floatx80_default_nan(status);
    }

    if (aExp == 0) {
        if (aSig == 0) {
            return packFloatx80(aSign, 0, 0);
        }
        normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
    }

    return roundAndPackFloatx80(status->floatx80_rounding_precision, aSign,
                                0x3FFF, aSig, 0, status);
}

/*----------------------------------------------------------------------------
 | Returns the exponent of the extended double-precision floating-point
 | value `a' as an extended double-precision value.
 *----------------------------------------------------------------------------*/

floatx80 floatx80_getexp(floatx80 a, float_status *status)
{
    flag aSign;
    int32_t aExp;
    uint64_t aSig;

    aSig = extractFloatx80Frac(a);
    aExp = extractFloatx80Exp(a);
    aSign = extractFloatx80Sign(a);

    if (aExp == 0x7FFF) {
        if ((uint64_t) (aSig << 1)) {
            return propagateFloatx80NaNOneArg(a , status);
        }
        float_raise(float_flag_invalid , status);
        return floatx80_default_nan(status);
    }

    if (aExp == 0) {
        if (aSig == 0) {
            return packFloatx80(aSign, 0, 0);
        }
        normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
    }

    return int32_to_floatx80(aExp - 0x3FFF, status);
}

/*----------------------------------------------------------------------------
 | Scales extended double-precision floating-point value in operand `a' by
 | value `b'. The function truncates the value in the second operand 'b' to
 | an integral value and adds that value to the exponent of the operand 'a'.
 | The operation performed according to the IEC/IEEE Standard for Binary
 | Floating-Point Arithmetic.
 *----------------------------------------------------------------------------*/

floatx80 floatx80_scale(floatx80 a, floatx80 b, float_status *status)
{
    flag aSign, bSign;
    int32_t aExp, bExp, shiftCount;
    uint64_t aSig, bSig;

    aSig = extractFloatx80Frac(a);
    aExp = extractFloatx80Exp(a);
    aSign = extractFloatx80Sign(a);
    bSig = extractFloatx80Frac(b);
    bExp = extractFloatx80Exp(b);
    bSign = extractFloatx80Sign(b);

    if (bExp == 0x7FFF) {
        if ((uint64_t) (bSig << 1) ||
            ((aExp == 0x7FFF) && (uint64_t) (aSig << 1))) {
            return propagateFloatx80NaN(a, b, status);
        }
        float_raise(float_flag_invalid , status);
        return floatx80_default_nan(status);
    }
    if (aExp == 0x7FFF) {
        if ((uint64_t) (aSig << 1)) {
            return propagateFloatx80NaN(a, b, status);
        }
        return packFloatx80(aSign, floatx80_infinity.high,
                            floatx80_infinity.low);
    }
    if (aExp == 0) {
        if (aSig == 0) {
            return packFloatx80(aSign, 0, 0);
        }
        if (bExp < 0x3FFF) {
            return a;
        }
        normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
    }

    if (bExp < 0x3FFF) {
        return a;
    }

    if (0x400F < bExp) {
        aExp = bSign ? -0x6001 : 0xE000;
        return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                    aSign, aExp, aSig, 0, status);
    }

    shiftCount = 0x403E - bExp;
    bSig >>= shiftCount;
    aExp = bSign ? (aExp - bSig) : (aExp + bSig);

    return roundAndPackFloatx80(status->floatx80_rounding_precision,
                                aSign, aExp, aSig, 0, status);
}