1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
|
/*
* Ported from a work by Andreas Grabher for Previous, NeXT Computer Emulator,
* derived from NetBSD M68040 FPSP functions,
* derived from release 2a of the SoftFloat IEC/IEEE Floating-point Arithmetic
* Package. Those parts of the code (and some later contributions) are
* provided under that license, as detailed below.
* It has subsequently been modified by contributors to the QEMU Project,
* so some portions are provided under:
* the SoftFloat-2a license
* the BSD license
* GPL-v2-or-later
*
* Any future contributions to this file will be taken to be licensed under
* the Softfloat-2a license unless specifically indicated otherwise.
*/
/* Portions of this work are licensed under the terms of the GNU GPL,
* version 2 or later. See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "softfloat.h"
#include "fpu/softfloat-macros.h"
#include "softfloat_fpsp_tables.h"
static floatx80 propagateFloatx80NaNOneArg(floatx80 a, float_status *status)
{
if (floatx80_is_signaling_nan(a, status)) {
float_raise(float_flag_invalid, status);
}
if (status->default_nan_mode) {
return floatx80_default_nan(status);
}
return floatx80_maybe_silence_nan(a, status);
}
/*----------------------------------------------------------------------------
| Returns the modulo remainder of the extended double-precision floating-point
| value `a' with respect to the corresponding value `b'.
*----------------------------------------------------------------------------*/
floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status)
{
flag aSign, zSign;
int32_t aExp, bExp, expDiff;
uint64_t aSig0, aSig1, bSig;
uint64_t qTemp, term0, term1;
aSig0 = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
bSig = extractFloatx80Frac(b);
bExp = extractFloatx80Exp(b);
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig0 << 1)
|| ((bExp == 0x7FFF) && (uint64_t) (bSig << 1))) {
return propagateFloatx80NaN(a, b, status);
}
goto invalid;
}
if (bExp == 0x7FFF) {
if ((uint64_t) (bSig << 1)) {
return propagateFloatx80NaN(a, b, status);
}
return a;
}
if (bExp == 0) {
if (bSig == 0) {
invalid:
float_raise(float_flag_invalid, status);
return floatx80_default_nan(status);
}
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
}
if (aExp == 0) {
if ((uint64_t) (aSig0 << 1) == 0) {
return a;
}
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
}
bSig |= LIT64(0x8000000000000000);
zSign = aSign;
expDiff = aExp - bExp;
aSig1 = 0;
if (expDiff < 0) {
return a;
}
qTemp = (bSig <= aSig0);
if (qTemp) {
aSig0 -= bSig;
}
expDiff -= 64;
while (0 < expDiff) {
qTemp = estimateDiv128To64(aSig0, aSig1, bSig);
qTemp = (2 < qTemp) ? qTemp - 2 : 0;
mul64To128(bSig, qTemp, &term0, &term1);
sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
shortShift128Left(aSig0, aSig1, 62, &aSig0, &aSig1);
}
expDiff += 64;
if (0 < expDiff) {
qTemp = estimateDiv128To64(aSig0, aSig1, bSig);
qTemp = (2 < qTemp) ? qTemp - 2 : 0;
qTemp >>= 64 - expDiff;
mul64To128(bSig, qTemp << (64 - expDiff), &term0, &term1);
sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
shortShift128Left(0, bSig, 64 - expDiff, &term0, &term1);
while (le128(term0, term1, aSig0, aSig1)) {
++qTemp;
sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
}
}
return
normalizeRoundAndPackFloatx80(
80, zSign, bExp + expDiff, aSig0, aSig1, status);
}
/*----------------------------------------------------------------------------
| Returns the mantissa of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
floatx80 floatx80_getman(floatx80 a, float_status *status)
{
flag aSign;
int32_t aExp;
uint64_t aSig;
aSig = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig << 1)) {
return propagateFloatx80NaNOneArg(a , status);
}
float_raise(float_flag_invalid , status);
return floatx80_default_nan(status);
}
if (aExp == 0) {
if (aSig == 0) {
return packFloatx80(aSign, 0, 0);
}
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
}
return roundAndPackFloatx80(status->floatx80_rounding_precision, aSign,
0x3FFF, aSig, 0, status);
}
/*----------------------------------------------------------------------------
| Returns the exponent of the extended double-precision floating-point
| value `a' as an extended double-precision value.
*----------------------------------------------------------------------------*/
floatx80 floatx80_getexp(floatx80 a, float_status *status)
{
flag aSign;
int32_t aExp;
uint64_t aSig;
aSig = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig << 1)) {
return propagateFloatx80NaNOneArg(a , status);
}
float_raise(float_flag_invalid , status);
return floatx80_default_nan(status);
}
if (aExp == 0) {
if (aSig == 0) {
return packFloatx80(aSign, 0, 0);
}
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
}
return int32_to_floatx80(aExp - 0x3FFF, status);
}
/*----------------------------------------------------------------------------
| Scales extended double-precision floating-point value in operand `a' by
| value `b'. The function truncates the value in the second operand 'b' to
| an integral value and adds that value to the exponent of the operand 'a'.
| The operation performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
*----------------------------------------------------------------------------*/
floatx80 floatx80_scale(floatx80 a, floatx80 b, float_status *status)
{
flag aSign, bSign;
int32_t aExp, bExp, shiftCount;
uint64_t aSig, bSig;
aSig = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
bSig = extractFloatx80Frac(b);
bExp = extractFloatx80Exp(b);
bSign = extractFloatx80Sign(b);
if (bExp == 0x7FFF) {
if ((uint64_t) (bSig << 1) ||
((aExp == 0x7FFF) && (uint64_t) (aSig << 1))) {
return propagateFloatx80NaN(a, b, status);
}
float_raise(float_flag_invalid , status);
return floatx80_default_nan(status);
}
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig << 1)) {
return propagateFloatx80NaN(a, b, status);
}
return packFloatx80(aSign, floatx80_infinity.high,
floatx80_infinity.low);
}
if (aExp == 0) {
if (aSig == 0) {
return packFloatx80(aSign, 0, 0);
}
if (bExp < 0x3FFF) {
return a;
}
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
}
if (bExp < 0x3FFF) {
return a;
}
if (0x400F < bExp) {
aExp = bSign ? -0x6001 : 0xE000;
return roundAndPackFloatx80(status->floatx80_rounding_precision,
aSign, aExp, aSig, 0, status);
}
shiftCount = 0x403E - bExp;
bSig >>= shiftCount;
aExp = bSign ? (aExp - bSig) : (aExp + bSig);
return roundAndPackFloatx80(status->floatx80_rounding_precision,
aSign, aExp, aSig, 0, status);
}
floatx80 floatx80_move(floatx80 a, float_status *status)
{
flag aSign;
int32_t aExp;
uint64_t aSig;
aSig = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
if (aExp == 0x7FFF) {
if ((uint64_t)(aSig << 1)) {
return propagateFloatx80NaNOneArg(a, status);
}
return a;
}
if (aExp == 0) {
if (aSig == 0) {
return a;
}
normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
aSign, aExp, aSig, 0, status);
}
return roundAndPackFloatx80(status->floatx80_rounding_precision, aSign,
aExp, aSig, 0, status);
}
/*----------------------------------------------------------------------------
| Algorithms for transcendental functions supported by MC68881 and MC68882
| mathematical coprocessors. The functions are derived from FPSP library.
*----------------------------------------------------------------------------*/
#define one_exp 0x3FFF
#define one_sig LIT64(0x8000000000000000)
/*----------------------------------------------------------------------------
| Function for compactifying extended double-precision floating point values.
*----------------------------------------------------------------------------*/
static int32_t floatx80_make_compact(int32_t aExp, uint64_t aSig)
{
return (aExp << 16) | (aSig >> 48);
}
/*----------------------------------------------------------------------------
| Log base e of x plus 1
*----------------------------------------------------------------------------*/
floatx80 floatx80_lognp1(floatx80 a, float_status *status)
{
flag aSign;
int32_t aExp;
uint64_t aSig, fSig;
int8_t user_rnd_mode, user_rnd_prec;
int32_t compact, j, k;
floatx80 fp0, fp1, fp2, fp3, f, logof2, klog2, saveu;
aSig = extractFloatx80Frac(a);
aExp = extractFloatx80Exp(a);
aSign = extractFloatx80Sign(a);
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig << 1)) {
propagateFloatx80NaNOneArg(a, status);
}
if (aSign) {
float_raise(float_flag_invalid, status);
return floatx80_default_nan(status);
}
return packFloatx80(0, floatx80_infinity.high, floatx80_infinity.low);
}
if (aExp == 0 && aSig == 0) {
return packFloatx80(aSign, 0, 0);
}
if (aSign && aExp >= one_exp) {
if (aExp == one_exp && aSig == one_sig) {
float_raise(float_flag_divbyzero, status);
packFloatx80(aSign, floatx80_infinity.high, floatx80_infinity.low);
}
float_raise(float_flag_invalid, status);
return floatx80_default_nan(status);
}
if (aExp < 0x3f99 || (aExp == 0x3f99 && aSig == one_sig)) {
/* <= min threshold */
float_raise(float_flag_inexact, status);
return floatx80_move(a, status);
}
user_rnd_mode = status->float_rounding_mode;
user_rnd_prec = status->floatx80_rounding_precision;
status->float_rounding_mode = float_round_nearest_even;
status->floatx80_rounding_precision = 80;
compact = floatx80_make_compact(aExp, aSig);
fp0 = a; /* Z */
fp1 = a;
fp0 = floatx80_add(fp0, float32_to_floatx80(make_float32(0x3F800000),
status), status); /* X = (1+Z) */
aExp = extractFloatx80Exp(fp0);
aSig = extractFloatx80Frac(fp0);
compact = floatx80_make_compact(aExp, aSig);
if (compact < 0x3FFE8000 || compact > 0x3FFFC000) {
/* |X| < 1/2 or |X| > 3/2 */
k = aExp - 0x3FFF;
fp1 = int32_to_floatx80(k, status);
fSig = (aSig & LIT64(0xFE00000000000000)) | LIT64(0x0100000000000000);
j = (fSig >> 56) & 0x7E; /* DISPLACEMENT FOR 1/F */
f = packFloatx80(0, 0x3FFF, fSig); /* F */
fp0 = packFloatx80(0, 0x3FFF, aSig); /* Y */
fp0 = floatx80_sub(fp0, f, status); /* Y-F */
lp1cont1:
/* LP1CONT1 */
fp0 = floatx80_mul(fp0, log_tbl[j], status); /* FP0 IS U = (Y-F)/F */
logof2 = packFloatx80(0, 0x3FFE, LIT64(0xB17217F7D1CF79AC));
klog2 = floatx80_mul(fp1, logof2, status); /* FP1 IS K*LOG2 */
fp2 = floatx80_mul(fp0, fp0, status); /* FP2 IS V=U*U */
fp3 = fp2;
fp1 = fp2;
fp1 = floatx80_mul(fp1, float64_to_floatx80(
make_float64(0x3FC2499AB5E4040B), status),
status); /* V*A6 */
fp2 = floatx80_mul(fp2, float64_to_floatx80(
make_float64(0xBFC555B5848CB7DB), status),
status); /* V*A5 */
fp1 = floatx80_add(fp1, float64_to_floatx80(
make_float64(0x3FC99999987D8730), status),
status); /* A4+V*A6 */
fp2 = floatx80_add(fp2, float64_to_floatx80(
make_float64(0xBFCFFFFFFF6F7E97), status),
status); /* A3+V*A5 */
fp1 = floatx80_mul(fp1, fp3, status); /* V*(A4+V*A6) */
fp2 = floatx80_mul(fp2, fp3, status); /* V*(A3+V*A5) */
fp1 = floatx80_add(fp1, float64_to_floatx80(
make_float64(0x3FD55555555555A4), status),
status); /* A2+V*(A4+V*A6) */
fp2 = floatx80_add(fp2, float64_to_floatx80(
make_float64(0xBFE0000000000008), status),
status); /* A1+V*(A3+V*A5) */
fp1 = floatx80_mul(fp1, fp3, status); /* V*(A2+V*(A4+V*A6)) */
fp2 = floatx80_mul(fp2, fp3, status); /* V*(A1+V*(A3+V*A5)) */
fp1 = floatx80_mul(fp1, fp0, status); /* U*V*(A2+V*(A4+V*A6)) */
fp0 = floatx80_add(fp0, fp2, status); /* U+V*(A1+V*(A3+V*A5)) */
fp1 = floatx80_add(fp1, log_tbl[j + 1],
status); /* LOG(F)+U*V*(A2+V*(A4+V*A6)) */
fp0 = floatx80_add(fp0, fp1, status); /* FP0 IS LOG(F) + LOG(1+U) */
status->float_rounding_mode = user_rnd_mode;
status->floatx80_rounding_precision = user_rnd_prec;
a = floatx80_add(fp0, klog2, status);
float_raise(float_flag_inexact, status);
return a;
} else if (compact < 0x3FFEF07D || compact > 0x3FFF8841) {
/* |X| < 1/16 or |X| > -1/16 */
/* LP1CARE */
fSig = (aSig & LIT64(0xFE00000000000000)) | LIT64(0x0100000000000000);
f = packFloatx80(0, 0x3FFF, fSig); /* F */
j = (fSig >> 56) & 0x7E; /* DISPLACEMENT FOR 1/F */
if (compact >= 0x3FFF8000) { /* 1+Z >= 1 */
/* KISZERO */
fp0 = floatx80_sub(float32_to_floatx80(make_float32(0x3F800000),
status), f, status); /* 1-F */
fp0 = floatx80_add(fp0, fp1, status); /* FP0 IS Y-F = (1-F)+Z */
fp1 = packFloatx80(0, 0, 0); /* K = 0 */
} else {
/* KISNEG */
fp0 = floatx80_sub(float32_to_floatx80(make_float32(0x40000000),
status), f, status); /* 2-F */
fp1 = floatx80_add(fp1, fp1, status); /* 2Z */
fp0 = floatx80_add(fp0, fp1, status); /* FP0 IS Y-F = (2-F)+2Z */
fp1 = packFloatx80(1, one_exp, one_sig); /* K = -1 */
}
goto lp1cont1;
} else {
/* LP1ONE16 */
fp1 = floatx80_add(fp1, fp1, status); /* FP1 IS 2Z */
fp0 = floatx80_add(fp0, float32_to_floatx80(make_float32(0x3F800000),
status), status); /* FP0 IS 1+X */
/* LP1CONT2 */
fp1 = floatx80_div(fp1, fp0, status); /* U */
saveu = fp1;
fp0 = floatx80_mul(fp1, fp1, status); /* FP0 IS V = U*U */
fp1 = floatx80_mul(fp0, fp0, status); /* FP1 IS W = V*V */
fp3 = float64_to_floatx80(make_float64(0x3F175496ADD7DAD6),
status); /* B5 */
fp2 = float64_to_floatx80(make_float64(0x3F3C71C2FE80C7E0),
status); /* B4 */
fp3 = floatx80_mul(fp3, fp1, status); /* W*B5 */
fp2 = floatx80_mul(fp2, fp1, status); /* W*B4 */
fp3 = floatx80_add(fp3, float64_to_floatx80(
make_float64(0x3F624924928BCCFF), status),
status); /* B3+W*B5 */
fp2 = floatx80_add(fp2, float64_to_floatx80(
make_float64(0x3F899999999995EC), status),
status); /* B2+W*B4 */
fp1 = floatx80_mul(fp1, fp3, status); /* W*(B3+W*B5) */
fp2 = floatx80_mul(fp2, fp0, status); /* V*(B2+W*B4) */
fp1 = floatx80_add(fp1, float64_to_floatx80(
make_float64(0x3FB5555555555555), status),
status); /* B1+W*(B3+W*B5) */
fp0 = floatx80_mul(fp0, saveu, status); /* FP0 IS U*V */
fp1 = floatx80_add(fp1, fp2,
status); /* B1+W*(B3+W*B5) + V*(B2+W*B4) */
fp0 = floatx80_mul(fp0, fp1,
status); /* U*V*([B1+W*(B3+W*B5)] + [V*(B2+W*B4)]) */
status->float_rounding_mode = user_rnd_mode;
status->floatx80_rounding_precision = user_rnd_prec;
a = floatx80_add(fp0, saveu, status);
/*if (!floatx80_is_zero(a)) { */
float_raise(float_flag_inexact, status);
/*} */
return a;
}
}
|