1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
/*
* Copyright (C) 2016 Veertu Inc,
* Copyright (C) 2017 Google Inc,
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "x86_decode.h"
#include "x86_emu.h"
#include "vmcs.h"
#include "vmx.h"
#include "x86_mmu.h"
#include "x86_descr.h"
/* static uint32_t x86_segment_access_rights(struct x86_segment_descriptor *var)
{
uint32_t ar;
if (!var->p) {
ar = 1 << 16;
return ar;
}
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->p & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
return ar;
}*/
bool x86_read_segment_descriptor(CPUState *cpu,
struct x86_segment_descriptor *desc,
x68_segment_selector sel)
{
target_ulong base;
uint32_t limit;
memset(desc, 0, sizeof(*desc));
/* valid gdt descriptors start from index 1 */
if (!sel.index && GDT_SEL == sel.ti) {
return false;
}
if (GDT_SEL == sel.ti) {
base = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_BASE);
limit = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_LIMIT);
} else {
base = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_BASE);
limit = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_LIMIT);
}
if (sel.index * 8 >= limit) {
return false;
}
vmx_read_mem(cpu, desc, base + sel.index * 8, sizeof(*desc));
return true;
}
bool x86_write_segment_descriptor(CPUState *cpu,
struct x86_segment_descriptor *desc,
x68_segment_selector sel)
{
target_ulong base;
uint32_t limit;
if (GDT_SEL == sel.ti) {
base = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_BASE);
limit = rvmcs(cpu->accel->fd, VMCS_GUEST_GDTR_LIMIT);
} else {
base = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_BASE);
limit = rvmcs(cpu->accel->fd, VMCS_GUEST_LDTR_LIMIT);
}
if (sel.index * 8 >= limit) {
printf("%s: gdt limit\n", __func__);
return false;
}
vmx_write_mem(cpu, base + sel.index * 8, desc, sizeof(*desc));
return true;
}
bool x86_read_call_gate(CPUState *cpu, struct x86_call_gate *idt_desc,
int gate)
{
target_ulong base = rvmcs(cpu->accel->fd, VMCS_GUEST_IDTR_BASE);
uint32_t limit = rvmcs(cpu->accel->fd, VMCS_GUEST_IDTR_LIMIT);
memset(idt_desc, 0, sizeof(*idt_desc));
if (gate * 8 >= limit) {
printf("%s: idt limit\n", __func__);
return false;
}
vmx_read_mem(cpu, idt_desc, base + gate * 8, sizeof(*idt_desc));
return true;
}
bool x86_is_protected(CPUState *cpu)
{
uint64_t cr0 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR0);
return cr0 & CR0_PE_MASK;
}
bool x86_is_real(CPUState *cpu)
{
return !x86_is_protected(cpu);
}
bool x86_is_v8086(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
return x86_is_protected(cpu) && (env->eflags & VM_MASK);
}
bool x86_is_long_mode(CPUState *cpu)
{
return rvmcs(cpu->accel->fd, VMCS_GUEST_IA32_EFER) & MSR_EFER_LMA;
}
bool x86_is_long64_mode(CPUState *cpu)
{
struct vmx_segment desc;
vmx_read_segment_descriptor(cpu, &desc, R_CS);
return x86_is_long_mode(cpu) && ((desc.ar >> 13) & 1);
}
bool x86_is_paging_mode(CPUState *cpu)
{
uint64_t cr0 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR0);
return cr0 & CR0_PG_MASK;
}
bool x86_is_pae_enabled(CPUState *cpu)
{
uint64_t cr4 = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
return cr4 & CR4_PAE_MASK;
}
target_ulong linear_addr(CPUState *cpu, target_ulong addr, X86Seg seg)
{
return vmx_read_segment_base(cpu, seg) + addr;
}
target_ulong linear_addr_size(CPUState *cpu, target_ulong addr, int size,
X86Seg seg)
{
switch (size) {
case 2:
addr = (uint16_t)addr;
break;
case 4:
addr = (uint32_t)addr;
break;
default:
break;
}
return linear_addr(cpu, addr, seg);
}
target_ulong linear_rip(CPUState *cpu, target_ulong rip)
{
return linear_addr(cpu, rip, R_CS);
}
|